Submission #240063

# Submission time Handle Problem Language Result Execution time Memory
240063 2020-06-17T20:41:57 Z rqi Construction of Highway (JOI18_construction) C++14
100 / 100
462 ms 16248 KB
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 

typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 

typedef vector<int> vi; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 

#define mp make_pair
#define f first
#define s second
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 

template<class T> bool ckmin(T& a, const T& b) { 
    return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
    return a < b ? a = b, 1 : 0; } 
int pct(int x) { return __builtin_popcount(x); } 
int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
int cdiv(int a, int b) { return a/b+!(a<0||a%b == 0); } // division of a by b rounded up, assumes b > 0 
int fstTrue(function<bool(int)> f, int lo, int hi) {
    hi ++; assert(lo <= hi); // assuming f is increasing
    while (lo < hi) { // find first index such that f is true 
        int mid = (lo+hi)/2; 
        f(mid) ? hi = mid : lo = mid+1; 
    } 
    return lo;
}

// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);

template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }

template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }

// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
template<class A> str ts(complex<A> c) { 
    stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) { 
    str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
    res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
    str res = ""; F0R(i,SZ) res += char('0'+b[i]);
    return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { // containers with begin(), end()
    bool fst = 1; str res = "{";
    for (const auto& x: v) {
        if (!fst) res += ", ";
        fst = 0; res += ts(x);
    }
    res += "}"; return res;
}
template<class A, class B> str ts(pair<A,B> p) {
    return "("+ts(p.f)+", "+ts(p.s)+")"; }

// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
    pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
    pr(h); if (sizeof...(t)) pr(" "); ps(t...); }

// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
    cerr << ts(h); if (sizeof...(t)) cerr << ", ";
    DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL
#define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 0
#endif

// FILE I/O
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { ios_base::sync_with_stdio(0); cin.tie(0); }
void setIO(string s = "") {
    unsyncIO();
    // cin.exceptions(cin.failbit); 
    // throws exception when do smth illegal
    // ex. try to read letter into int
    if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}




/**
 * Description: Link-Cut Tree. Given a function $f(1\ldots N)\to 1\ldots N,$ 
     * evaluates $f^b(a)$ for any $a,b.$ \texttt{sz} is for path queries; 
     * \texttt{sub}, \texttt{vsub} are for subtree queries. \texttt{x->access()} 
     * brings \texttt{x} to the top and propagates it; its left subtree will be 
     * the path from \texttt{x} to the root and its right subtree will be empty. 
     * Then \texttt{sub} will be the number of nodes in the connected component
     * of \texttt{x} and \texttt{vsub} will be the number of nodes under \texttt{x}.
     * Use \texttt{makeRoot} for arbitrary path queries.
 * Time: O(\log N)
 * Usage: FOR(i,1,N+1)LCT[i]=new snode(i); link(LCT[1],LCT[2],1);
 * Source: Dhruv Rohatgi, Eric Zhang
    * https://sites.google.com/site/kc97ble/container/splay-tree/splaytree-cpp-3
    * https://codeforces.com/blog/entry/67637
 * Verification: (see README for links)
    * ekzhang Balanced Tokens
    * Dynamic Tree Test (Easy)
    * https://probgate.org/viewproblem.php?pid=578 (The Applicant)
 */

typedef struct snode* sn;
struct snode { //////// VARIABLES
    sn p, c[2]; // parent, children
    sn extra; // extra cycle node for "The Applicant"
    bool flip = 0; // subtree flipped or not
    int val, sz; // value in node, # nodes in current splay tree
    int sub, vsub = 0; // vsub stores sum of virtual children
    snode(int _val) : val(_val) {
        p = c[0] = c[1] = extra = NULL; calc(); }
    friend int getSz(sn x) { return x?x->sz:0; }
    friend int getSub(sn x) { return x?x->sub:0; }
    void prop() { // lazy prop
        //if (!flip) return;
        if(c[0]) c[0]->val = val;
        if(c[1]) c[1]->val = val;
        /*swap(c[0],c[1]); flip = 0;
        F0R(i,2) if (c[i]) c[i]->flip ^= 1;*/
    }
    void calc() { // recalc vals
        F0R(i,2) if (c[i]) c[i]->prop();
        sz = 1+getSz(c[0])+getSz(c[1]);
        sub = 1+getSub(c[0])+getSub(c[1])+vsub;
    }
    //////// SPLAY TREE OPERATIONS
    int dir() {
        if (!p) return -2;
        F0R(i,2) if (p->c[i] == this) return i;
        return -1; // p is path-parent pointer
    } // -> not in current splay tree
    // test if root of current splay tree
    bool isRoot() { return dir() < 0; } 
    friend void setLink(sn x, sn y, int d) {
        if (y) y->p = x;
        if (d >= 0) x->c[d] = y; }
    void rot() { // assume p and p->p propagated
        assert(!isRoot()); int x = dir(); sn pa = p;
        setLink(pa->p, this, pa->dir());
        setLink(pa, c[x^1], x); setLink(this, pa, x^1);
        pa->calc(); calc();
    }
    void splay() {
        while (!isRoot() && !p->isRoot()) {
            p->p->prop(), p->prop(), prop();
            dir() == p->dir() ? p->rot() : rot();
            rot();
        }
        if (!isRoot()) p->prop(), prop(), rot();
        prop();
    }
    sn fbo(int b) { // find by order
        prop(); int z = getSz(c[0]); // of splay tree
        if (b == z) { splay(); return this; }
        return b < z ? c[0]->fbo(b) : c[1] -> fbo(b-z-1);
    }
    //////// BASE OPERATIONS

    //return vector of mp(val, sz)
    vpi access(sn b, int num) { // bring this to top of tree, propagate
        vpi rval; //return value
        for (sn v = this, pre = NULL; v; v = v->p) {
            v->splay(); // now switch virtual children
            if (pre) v->vsub -= pre->sub;
            if (v->c[1]) v->vsub += v->c[1]->sub;
            pi valsz;
            valsz.f = v->val;
            valsz.s = 1;
            if(v->c[0]) valsz.s += v->c[0]->sz;
            rval.pb(valsz);
            v->c[1] = pre; v->calc(); pre = v;
        }
        splay(); assert(!c[1]); // right subtree is empty
        setLink(this, b, 1);
        b->calc();
        calc();
        b->splay();
        b->val = num;
        b->prop();
        return rval;
    }
};


/**
 * Description: range sum queries and point updates for $D$ dimensions
 * Source: https://codeforces.com/blog/entry/64914
 * Verification: SPOJ matsum
 * Usage: \texttt{BIT<int,10,10>} gives 2D BIT
 * Time: O((\log N)^D)
 */

template <class T, int ...Ns> struct BIT {
    T val = 0; void upd(T v) { val += v; }
    T query() { return val; }
};
template <class T, int N, int... Ns> struct BIT<T, N, Ns...> {
    BIT<T,Ns...> bit[N+1];
    template<typename... Args> void upd(int pos, Args... args) {
        for (; pos<=N; pos+=pos&-pos) bit[pos].upd(args...); }
    template<typename... Args> T sum(int r, Args... args) {
        T res=0; for (;r;r-=r&-r) res += bit[r].query(args...); 
        return res; }
    template<typename... Args> T query(int l, int r, Args... 
        args) { return sum(r,args...)-sum(l-1,args...); }
}; 


const int mx = 100005;
int C[mx];
sn LCT[mx];
BIT<ll, 100005> bit;

int main() {
    setIO();
    int N;
    cin >> N;
    map<int, int> m;
    for(int i = 1; i <= N; i++){
        cin >> C[i];
        m[C[i]];
    }

    int cnt = 0;
    for(auto &u: m){
        cnt++;
        u.s = cnt;
    }
        
    for(int i = 1; i <= N; i++){
        C[i] = m[C[i]];
        LCT[i] = new snode(C[i]);
    }

    for(int i = 1; i <= N-1; i++){
        int A, B;
        cin >> A >> B;
        
        vpi nums = LCT[A]->access(LCT[B], C[B]);
        //dbg(A, B, C[B]);
        //dbg(nums);
        ll ans = 0;
        for(auto u: nums){
            bit.upd(u.f, u.s);
            ans+=ll(u.s)*bit.query(1, u.f-1);
        }
        for(auto u: nums){
            bit.upd(u.f, -u.s);
        }
        ps(ans);
    }
    // you should actually read the stuff at the bottom
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?)
    * do smth instead of nothing and stay organized
    * WRITE STUFF DOWN
*/

Compilation message

construction.cpp: In function 'void setIn(std::__cxx11::string)':
construction.cpp:128:31: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                        ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
construction.cpp: In function 'void setOut(std::__cxx11::string)':
construction.cpp:129:32: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 4 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 6 ms 384 KB Output is correct
6 Correct 5 ms 512 KB Output is correct
7 Correct 7 ms 384 KB Output is correct
8 Correct 5 ms 512 KB Output is correct
9 Correct 5 ms 512 KB Output is correct
10 Correct 5 ms 512 KB Output is correct
11 Correct 5 ms 512 KB Output is correct
12 Correct 5 ms 512 KB Output is correct
13 Correct 5 ms 384 KB Output is correct
14 Correct 6 ms 512 KB Output is correct
15 Correct 5 ms 384 KB Output is correct
16 Correct 6 ms 512 KB Output is correct
17 Correct 5 ms 512 KB Output is correct
18 Correct 6 ms 512 KB Output is correct
19 Correct 5 ms 384 KB Output is correct
20 Correct 6 ms 512 KB Output is correct
21 Correct 5 ms 512 KB Output is correct
22 Correct 5 ms 384 KB Output is correct
23 Correct 5 ms 384 KB Output is correct
24 Correct 5 ms 384 KB Output is correct
25 Correct 6 ms 512 KB Output is correct
26 Correct 5 ms 384 KB Output is correct
27 Correct 5 ms 512 KB Output is correct
28 Correct 5 ms 512 KB Output is correct
29 Correct 5 ms 384 KB Output is correct
30 Correct 6 ms 512 KB Output is correct
31 Correct 5 ms 384 KB Output is correct
32 Correct 5 ms 384 KB Output is correct
33 Correct 6 ms 512 KB Output is correct
34 Correct 5 ms 512 KB Output is correct
35 Correct 5 ms 384 KB Output is correct
36 Correct 5 ms 384 KB Output is correct
37 Correct 5 ms 384 KB Output is correct
38 Correct 5 ms 384 KB Output is correct
39 Correct 5 ms 512 KB Output is correct
40 Correct 5 ms 384 KB Output is correct
41 Correct 5 ms 384 KB Output is correct
42 Correct 5 ms 384 KB Output is correct
43 Correct 5 ms 512 KB Output is correct
44 Correct 5 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 6 ms 384 KB Output is correct
6 Correct 5 ms 512 KB Output is correct
7 Correct 7 ms 384 KB Output is correct
8 Correct 5 ms 512 KB Output is correct
9 Correct 5 ms 512 KB Output is correct
10 Correct 5 ms 512 KB Output is correct
11 Correct 5 ms 512 KB Output is correct
12 Correct 5 ms 512 KB Output is correct
13 Correct 5 ms 384 KB Output is correct
14 Correct 6 ms 512 KB Output is correct
15 Correct 5 ms 384 KB Output is correct
16 Correct 6 ms 512 KB Output is correct
17 Correct 5 ms 512 KB Output is correct
18 Correct 6 ms 512 KB Output is correct
19 Correct 5 ms 384 KB Output is correct
20 Correct 6 ms 512 KB Output is correct
21 Correct 5 ms 512 KB Output is correct
22 Correct 5 ms 384 KB Output is correct
23 Correct 5 ms 384 KB Output is correct
24 Correct 5 ms 384 KB Output is correct
25 Correct 6 ms 512 KB Output is correct
26 Correct 5 ms 384 KB Output is correct
27 Correct 5 ms 512 KB Output is correct
28 Correct 5 ms 512 KB Output is correct
29 Correct 5 ms 384 KB Output is correct
30 Correct 6 ms 512 KB Output is correct
31 Correct 5 ms 384 KB Output is correct
32 Correct 5 ms 384 KB Output is correct
33 Correct 6 ms 512 KB Output is correct
34 Correct 5 ms 512 KB Output is correct
35 Correct 5 ms 384 KB Output is correct
36 Correct 5 ms 384 KB Output is correct
37 Correct 5 ms 384 KB Output is correct
38 Correct 5 ms 384 KB Output is correct
39 Correct 5 ms 512 KB Output is correct
40 Correct 5 ms 384 KB Output is correct
41 Correct 5 ms 384 KB Output is correct
42 Correct 5 ms 384 KB Output is correct
43 Correct 5 ms 512 KB Output is correct
44 Correct 5 ms 384 KB Output is correct
45 Correct 7 ms 512 KB Output is correct
46 Correct 13 ms 1024 KB Output is correct
47 Correct 13 ms 1024 KB Output is correct
48 Correct 13 ms 1024 KB Output is correct
49 Correct 10 ms 1024 KB Output is correct
50 Correct 9 ms 1024 KB Output is correct
51 Correct 10 ms 1024 KB Output is correct
52 Correct 9 ms 1024 KB Output is correct
53 Correct 9 ms 1024 KB Output is correct
54 Correct 9 ms 1024 KB Output is correct
55 Correct 9 ms 1024 KB Output is correct
56 Correct 9 ms 1024 KB Output is correct
57 Correct 14 ms 896 KB Output is correct
58 Correct 15 ms 1024 KB Output is correct
59 Correct 15 ms 1024 KB Output is correct
60 Correct 15 ms 1024 KB Output is correct
61 Correct 11 ms 1024 KB Output is correct
62 Correct 11 ms 1024 KB Output is correct
63 Correct 11 ms 1024 KB Output is correct
64 Correct 12 ms 768 KB Output is correct
65 Correct 12 ms 768 KB Output is correct
66 Correct 13 ms 768 KB Output is correct
67 Correct 13 ms 896 KB Output is correct
68 Correct 8 ms 768 KB Output is correct
69 Correct 9 ms 1024 KB Output is correct
70 Correct 8 ms 768 KB Output is correct
71 Correct 8 ms 768 KB Output is correct
72 Correct 15 ms 896 KB Output is correct
73 Correct 15 ms 768 KB Output is correct
74 Correct 10 ms 768 KB Output is correct
75 Correct 9 ms 896 KB Output is correct
76 Correct 9 ms 896 KB Output is correct
77 Correct 9 ms 896 KB Output is correct
78 Correct 8 ms 768 KB Output is correct
79 Correct 8 ms 800 KB Output is correct
80 Correct 8 ms 768 KB Output is correct
81 Correct 11 ms 896 KB Output is correct
82 Correct 11 ms 896 KB Output is correct
83 Correct 11 ms 896 KB Output is correct
84 Correct 10 ms 768 KB Output is correct
85 Correct 10 ms 768 KB Output is correct
86 Correct 10 ms 768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 6 ms 384 KB Output is correct
6 Correct 5 ms 512 KB Output is correct
7 Correct 7 ms 384 KB Output is correct
8 Correct 5 ms 512 KB Output is correct
9 Correct 5 ms 512 KB Output is correct
10 Correct 5 ms 512 KB Output is correct
11 Correct 5 ms 512 KB Output is correct
12 Correct 5 ms 512 KB Output is correct
13 Correct 5 ms 384 KB Output is correct
14 Correct 6 ms 512 KB Output is correct
15 Correct 5 ms 384 KB Output is correct
16 Correct 6 ms 512 KB Output is correct
17 Correct 5 ms 512 KB Output is correct
18 Correct 6 ms 512 KB Output is correct
19 Correct 5 ms 384 KB Output is correct
20 Correct 6 ms 512 KB Output is correct
21 Correct 5 ms 512 KB Output is correct
22 Correct 5 ms 384 KB Output is correct
23 Correct 5 ms 384 KB Output is correct
24 Correct 5 ms 384 KB Output is correct
25 Correct 6 ms 512 KB Output is correct
26 Correct 5 ms 384 KB Output is correct
27 Correct 5 ms 512 KB Output is correct
28 Correct 5 ms 512 KB Output is correct
29 Correct 5 ms 384 KB Output is correct
30 Correct 6 ms 512 KB Output is correct
31 Correct 5 ms 384 KB Output is correct
32 Correct 5 ms 384 KB Output is correct
33 Correct 6 ms 512 KB Output is correct
34 Correct 5 ms 512 KB Output is correct
35 Correct 5 ms 384 KB Output is correct
36 Correct 5 ms 384 KB Output is correct
37 Correct 5 ms 384 KB Output is correct
38 Correct 5 ms 384 KB Output is correct
39 Correct 5 ms 512 KB Output is correct
40 Correct 5 ms 384 KB Output is correct
41 Correct 5 ms 384 KB Output is correct
42 Correct 5 ms 384 KB Output is correct
43 Correct 5 ms 512 KB Output is correct
44 Correct 5 ms 384 KB Output is correct
45 Correct 7 ms 512 KB Output is correct
46 Correct 13 ms 1024 KB Output is correct
47 Correct 13 ms 1024 KB Output is correct
48 Correct 13 ms 1024 KB Output is correct
49 Correct 10 ms 1024 KB Output is correct
50 Correct 9 ms 1024 KB Output is correct
51 Correct 10 ms 1024 KB Output is correct
52 Correct 9 ms 1024 KB Output is correct
53 Correct 9 ms 1024 KB Output is correct
54 Correct 9 ms 1024 KB Output is correct
55 Correct 9 ms 1024 KB Output is correct
56 Correct 9 ms 1024 KB Output is correct
57 Correct 14 ms 896 KB Output is correct
58 Correct 15 ms 1024 KB Output is correct
59 Correct 15 ms 1024 KB Output is correct
60 Correct 15 ms 1024 KB Output is correct
61 Correct 11 ms 1024 KB Output is correct
62 Correct 11 ms 1024 KB Output is correct
63 Correct 11 ms 1024 KB Output is correct
64 Correct 12 ms 768 KB Output is correct
65 Correct 12 ms 768 KB Output is correct
66 Correct 13 ms 768 KB Output is correct
67 Correct 13 ms 896 KB Output is correct
68 Correct 8 ms 768 KB Output is correct
69 Correct 9 ms 1024 KB Output is correct
70 Correct 8 ms 768 KB Output is correct
71 Correct 8 ms 768 KB Output is correct
72 Correct 15 ms 896 KB Output is correct
73 Correct 15 ms 768 KB Output is correct
74 Correct 10 ms 768 KB Output is correct
75 Correct 9 ms 896 KB Output is correct
76 Correct 9 ms 896 KB Output is correct
77 Correct 9 ms 896 KB Output is correct
78 Correct 8 ms 768 KB Output is correct
79 Correct 8 ms 800 KB Output is correct
80 Correct 8 ms 768 KB Output is correct
81 Correct 11 ms 896 KB Output is correct
82 Correct 11 ms 896 KB Output is correct
83 Correct 11 ms 896 KB Output is correct
84 Correct 10 ms 768 KB Output is correct
85 Correct 10 ms 768 KB Output is correct
86 Correct 10 ms 768 KB Output is correct
87 Correct 28 ms 1920 KB Output is correct
88 Correct 88 ms 4984 KB Output is correct
89 Correct 350 ms 15736 KB Output is correct
90 Correct 353 ms 15864 KB Output is correct
91 Correct 354 ms 15772 KB Output is correct
92 Correct 177 ms 15864 KB Output is correct
93 Correct 159 ms 15608 KB Output is correct
94 Correct 172 ms 15612 KB Output is correct
95 Correct 184 ms 15852 KB Output is correct
96 Correct 183 ms 16248 KB Output is correct
97 Correct 187 ms 16248 KB Output is correct
98 Correct 176 ms 16248 KB Output is correct
99 Correct 201 ms 15864 KB Output is correct
100 Correct 416 ms 15484 KB Output is correct
101 Correct 452 ms 15736 KB Output is correct
102 Correct 462 ms 15924 KB Output is correct
103 Correct 452 ms 15608 KB Output is correct
104 Correct 261 ms 15736 KB Output is correct
105 Correct 259 ms 15736 KB Output is correct
106 Correct 255 ms 15736 KB Output is correct
107 Correct 285 ms 9540 KB Output is correct
108 Correct 270 ms 9592 KB Output is correct
109 Correct 317 ms 11512 KB Output is correct
110 Correct 92 ms 9592 KB Output is correct
111 Correct 164 ms 15868 KB Output is correct
112 Correct 106 ms 10228 KB Output is correct
113 Correct 117 ms 9720 KB Output is correct
114 Correct 410 ms 15480 KB Output is correct
115 Correct 362 ms 9704 KB Output is correct
116 Correct 192 ms 9720 KB Output is correct
117 Correct 182 ms 15096 KB Output is correct
118 Correct 181 ms 15096 KB Output is correct
119 Correct 179 ms 15096 KB Output is correct
120 Correct 116 ms 9568 KB Output is correct
121 Correct 121 ms 9592 KB Output is correct
122 Correct 118 ms 9592 KB Output is correct
123 Correct 273 ms 15224 KB Output is correct
124 Correct 266 ms 15352 KB Output is correct
125 Correct 259 ms 15224 KB Output is correct
126 Correct 225 ms 9720 KB Output is correct
127 Correct 219 ms 9848 KB Output is correct
128 Correct 195 ms 9700 KB Output is correct