This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
const int LG = 21;
const int FN = 400005;
const long long MOD = 998244353;
const long long INF = 1e9;
const long long INFLL = 1e18;
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<ll> vll;
#define forn(i, n) for (int (i) = 0; (i) != (n); (i)++)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define popcount(x) __builtin_popcount(x)
#define popcountll(x) __builtin_popcountll(x)
#define fi first
#define se second
#define re return
#define pb push_back
#define uniq(x) sort(all(x)); (x).resize(unique(all(x)) - (x).begin())
#ifdef LOCAL
#define dbg(x) cerr << __LINE__ << " " << #x << " " << x << endl
#define ln cerr << __LINE__ << endl
#else
#define dbg(x) void(0)
#define ln void(0)
#endif // LOCAL
int cx[4] = {-1, 0, 1, 0};
int cy[4] = {0, -1, 0, 1};
string Yes[2] = {"No", "Yes"};
string YES[2] = {"NO", "YES"};
ll inq(ll x, ll y)
{
if (!y) re 1 % MOD;
ll l = inq(x, y / 2);
if (y % 2) re l * l % MOD * x % MOD;
re l * l % MOD;
}
ll rev(ll x)
{
return inq(x, MOD - 2);
}
bool __precomputed_combinatorics = 0;
vector<ll> __fact, __ufact, __rev;
void __precompute_combinatorics()
{
__precomputed_combinatorics = 1;
__fact.resize(FN);
__ufact.resize(FN);
__rev.resize(FN);
__rev[1] = 1;
for (int i = 2; i < FN; i++) __rev[i] = MOD - __rev[MOD % i] * (MOD / i) % MOD;
__fact[0] = 1, __ufact[0] = 1;
for (int i = 1; i < FN; i++) __fact[i] = __fact[i - 1] * i % MOD, __ufact[i] = __ufact[i - 1] * __rev[i] % MOD;
}
ll fact(int x)
{
if (!__precomputed_combinatorics) __precompute_combinatorics();
return __fact[x];
}
ll cnk(int n, int k)
{
if (k < 0 || k > n) return 0;
if (!__precomputed_combinatorics) __precompute_combinatorics();
return __fact[n] * __ufact[n - k] % MOD * __ufact[k] % MOD;
}
int Root(int x, vector<int> &root)
{
if (x == root[x]) return x;
return root[x] = Root(root[x], root);
}
void Merge(int v, int u, vector<int> &root, vector<int> &sz)
{
v = Root(v, root), u = Root(u, root);
if (v == u) return;
if (sz[v] < sz[u])
{
sz[u] += sz[v];
root[v] = u;
}
else
{
sz[v] += sz[u];
root[u] = v;
}
}
int ok(int x, int n)
{
return 0 <= x && x < n;
}
void bfs(int v, vi &dist, vector<vi> &graph)
{
fill(all(dist), -1);
dist[v] = 0;
vi q = {v};
for (int i = 0; i < q.size(); i++)
{
for (auto u : graph[q[i]])
{
if (dist[u] == -1)
{
dist[u] = dist[q[i]] + 1;
q.push_back(u);
}
}
}
}
ll log10(ll x)
{
if (x < 10) re 1;
re 1 + log10(x / 10);
}
double sqr(double x)
{
return x * x;
}
signed main()
{
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
ll h, w, a, b, c, n;
cin >> h >> w >> a >> b >> c >> n;
vll x(n), y(n);
forn(i, n) cin >> x[i] >> y[i];
vll dp(n, INFLL);
vi r(n, 0);
dp[0] = 0;
for (int i = 0; i < n; i++)
{
ll minc = INFLL, id = -1;
for (int j = 0; j < n; j++)
{
if (r[j] == 0 && dp[j] < minc)
{
minc = dp[j];
id = j;
}
}
r[id] = 1;
for (int j = 0; j < n; j++)
{
ll v = min(abs(x[id] - x[j]), abs(y[id] - y[j])) * c + b;
dp[j] = min(dp[j], dp[id] + v);
}
}
cout << dp[n - 1];
}
/* Note:
Check constants at the beginning of the code.
N is set to 4e5 but be careful in problems with large constant factor.
Setting N in every problem is more effective.
Check corner cases.
N = 1
No def int long long for now.
Add something here.
*/
Compilation message (stderr)
soccer.cpp: In function 'void bfs(int, vi&, std::vector<std::vector<int> >&)':
soccer.cpp:114:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (int i = 0; i < q.size(); i++)
~~^~~~~~~~~~
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |