#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <vector>
#include <algorithm>
#include <fstream>
#include <queue>
#include <deque>
#include <iomanip>
#include <cmath>
#include <set>
#include <stack>
#include <map>
#include <unordered_map>
#define FOR(i,n) for(int i=0;i<n;i++)
#define FORE(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
#define ld long double
//#define int ll
//#define int short
#define vi vector<int>
#define pb push_back
#define ff first
#define ss second
#define ii pair<int,int>
#define iii pair<int,ii>
#define iiii pair<iii,int>
#define pll pair<ll,ll>
#define plll pair<ll,pll>
//#define mp make_pair
#define vv vector
#define endl '\n'
using namespace std;
const int MAXN = 200*1000 + 5;
const int MAXT = 263*1000;
struct FenwickTree{
ll BITree[MAXN];
ll getSum(int index) {
ll sum = 0;
index = index + 1;
while (index>0){
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
void updateBIT(int index, ll val) {
index = index + 1;
while (index <= MAXN){
BITree[index] += val;
index += index & (-index);
}
}
void update(int a,int b,int c,int d,ll val){
updateBIT(d,val - get(a,b,c,d,d));
}
ll get(int a,int b,int c,int l,int r){
ll cost = getSum(r);
if(l != 0)cost -= getSum(l-1);
return cost;
}
};
/*
stage 1: still growing towards left. : sum of elements*time
stage 2(a): end growing and stabilise: sum of elementrange.
stage 2(b): grow and decay, hence no change: sum of element range
stage 3: just decay: sum(elementrange) - sum(element size)*time
stage 4: dead. We dont really need to keep track of this.
// lets see how we can better the implementation. We have a period when there is a growth
and then we have a period where there is a decay. Stage 2(a/b) can be calculated in terms of those.
stage 4 is bleh, just kick it out.
growth_end(i) = time when growth stops.
decay_start(i) = time when decay starts.
dead(i) = when we dont need to consider it.
for every viable i, ans is Arr[i]*(min(growth_end(i),t) - max(0,t-decay_start(i)))
=> Arr[i]*(min(growth_end(i),t)) - Arr[i]*(max(0,t-decay_start(i)));
*/
int D = 0;
int n;
struct Event{
// =1 means growth_end(i) has been reached, and it wont grow anymore;
// =2 means decay has been started.
// type2 = ded.
int type;
int time;
int item;
Event(int a,int b,int c){
type = a;
time = b;
item = c;
}
};
int prev_greater[MAXN];
int next_greater[MAXN];
ll arr[MAXN];
void generateGreaters(int n){
stack<int> st1;
stack<int> st2;
FOR(i,n){
while(!st1.empty() and arr[st1.top()] < arr[i])st1.pop();
if(st1.empty())prev_greater[i] = -3*n;
else prev_greater[i] = st1.top();
st1.push(i);
while(!st2.empty() and arr[st2.top()] <= arr[n-i-1])st2.pop();
if(st2.empty())next_greater[n-i-1] = n;
else next_greater[n-i-1] = st2.top();
st2.push(n-i-1);
}
}
vv<Event> eventlist;
void formEventList(int n){
FOR(i,n){
int delta1 = next_greater[i] - i;
eventlist.pb(Event(1,delta1,i));
int delta2 = i - prev_greater[i];
delta2--;
eventlist.pb(Event(2,delta2,i));
eventlist.pb(Event(3,delta2+delta1,i));
}
sort(eventlist.begin(), eventlist.end(),[&](Event e1,Event e2){
if(e1.time == e2.time)return e1.type < e2.type;
return e1.time < e2.time;
});
}
FenwickTree fenwick_expansion;// for expansion
FenwickTree fenwick_stable;// when no expansion
FenwickTree fenwick_decay;// when there is decay
FenwickTree fenwick_decay_helper; // basically decay is like Arr[i]*(t-somevalue), and Arr[i]*somevalue is determined by this array.
const int LOGN = 18;
ll sparseTable[LOGN][MAXN];
void generateSparseTable(){
FOR(i,n)sparseTable[0][i] = prev_greater[i];
FORE(i,1,LOGN-1){
FOR(j,n){
int p = sparseTable[i-1][j];
if(p < 0 )sparseTable[i][j] = p;
else sparseTable[i][j] = sparseTable[i-1][p];
}
}
}
ll getAnsForPrefix(int x,int t){
ll cost = 0;
int xcp = x;
// here we are essentially finding the element presiding over the last element.
for(int goUp = LOGN-1;goUp >= 0;goUp--){
if(sparseTable[goUp][x] >= 0 and xcp-sparseTable[goUp][x] <= t){
x = sparseTable[goUp][x];
}
}
cost += fenwick_expansion.get(0,0,n,0,x)*(t+1);// the expansion
cost += fenwick_stable.get(0,0,n,0,x);
cost -= fenwick_decay.get(0,0,n,0,x)*(t) - fenwick_decay_helper.get(0,0,n,0,x);
cost -= (arr[x])*(min(max(0,t-(xcp-x)),(next_greater[x]-xcp-1)));
return cost;
}
signed main(){
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int q;
cin >> n >> q;
FOR(i,n)cin >> arr[i];
iiii queries[q];
FOR(i,q){
int a,b,c;
cin >> a >> b >> c;
b--;c--;
queries[i] = {{a,{b,c}},i};
}
sort(queries,queries+q);
generateGreaters(n);
formEventList(n);
generateSparseTable();
reverse(eventlist.begin(), eventlist.end()); // since we take elements from back
FOR(i,n)fenwick_expansion.update(0,0,n,i,arr[i]);
ll ans[q];
for(auto f : queries){
auto e = f.ff;
int t = e.ff;
int a = e.ss.ff;int b = e.ss.ss;
// at time t, in range a to b;
while(!eventlist.empty() and eventlist.back().time <= t){
// we have got more events to process yay !!
Event e = eventlist.back();eventlist.pop_back();
int i = e.item;
if(e.type == 1){
fenwick_expansion.update(0,0,n,i,0);
fenwick_stable.update(0,0,n,i,arr[i]*e.time);
}else if(e.type == 2){
fenwick_decay.update(0,0,n,i,arr[i]);
fenwick_decay_helper.update(0,0,n,i,arr[i]*e.time);
}else{
fenwick_stable.update(0,0,n,i,0);
fenwick_decay_helper.update(0,0,n,i,0);
fenwick_decay.update(0,0,n,i,0);
}
}
ll cost = getAnsForPrefix(b,t);
if(a != 0)cost -= getAnsForPrefix(a-1,t);
ans[f.ss] = cost;
}
FOR(i,q){
cout << ans[i] << endl;
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
640 KB |
Output is correct |
2 |
Correct |
5 ms |
768 KB |
Output is correct |
3 |
Correct |
5 ms |
768 KB |
Output is correct |
4 |
Correct |
5 ms |
768 KB |
Output is correct |
5 |
Correct |
5 ms |
768 KB |
Output is correct |
6 |
Correct |
5 ms |
768 KB |
Output is correct |
7 |
Correct |
5 ms |
768 KB |
Output is correct |
8 |
Correct |
5 ms |
768 KB |
Output is correct |
9 |
Correct |
5 ms |
768 KB |
Output is correct |
10 |
Correct |
5 ms |
768 KB |
Output is correct |
11 |
Correct |
5 ms |
768 KB |
Output is correct |
12 |
Correct |
5 ms |
768 KB |
Output is correct |
13 |
Correct |
5 ms |
768 KB |
Output is correct |
14 |
Correct |
5 ms |
768 KB |
Output is correct |
15 |
Correct |
5 ms |
768 KB |
Output is correct |
16 |
Correct |
5 ms |
768 KB |
Output is correct |
17 |
Correct |
5 ms |
768 KB |
Output is correct |
18 |
Correct |
5 ms |
768 KB |
Output is correct |
19 |
Correct |
5 ms |
768 KB |
Output is correct |
20 |
Correct |
5 ms |
768 KB |
Output is correct |
21 |
Correct |
5 ms |
768 KB |
Output is correct |
22 |
Correct |
5 ms |
768 KB |
Output is correct |
23 |
Correct |
5 ms |
768 KB |
Output is correct |
24 |
Correct |
5 ms |
768 KB |
Output is correct |
25 |
Correct |
5 ms |
768 KB |
Output is correct |
26 |
Correct |
5 ms |
768 KB |
Output is correct |
27 |
Correct |
5 ms |
768 KB |
Output is correct |
28 |
Correct |
6 ms |
768 KB |
Output is correct |
29 |
Correct |
5 ms |
768 KB |
Output is correct |
30 |
Correct |
5 ms |
768 KB |
Output is correct |
31 |
Correct |
5 ms |
768 KB |
Output is correct |
32 |
Correct |
5 ms |
768 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
640 KB |
Output is correct |
2 |
Correct |
371 ms |
51528 KB |
Output is correct |
3 |
Correct |
370 ms |
51252 KB |
Output is correct |
4 |
Correct |
363 ms |
51572 KB |
Output is correct |
5 |
Correct |
367 ms |
52272 KB |
Output is correct |
6 |
Correct |
386 ms |
51700 KB |
Output is correct |
7 |
Correct |
391 ms |
52028 KB |
Output is correct |
8 |
Correct |
360 ms |
52552 KB |
Output is correct |
9 |
Correct |
367 ms |
52040 KB |
Output is correct |
10 |
Correct |
359 ms |
50888 KB |
Output is correct |
11 |
Correct |
367 ms |
52300 KB |
Output is correct |
12 |
Correct |
350 ms |
50760 KB |
Output is correct |
13 |
Correct |
367 ms |
52168 KB |
Output is correct |
14 |
Correct |
357 ms |
52168 KB |
Output is correct |
15 |
Correct |
370 ms |
52172 KB |
Output is correct |
16 |
Correct |
353 ms |
51620 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
640 KB |
Output is correct |
2 |
Correct |
404 ms |
50636 KB |
Output is correct |
3 |
Correct |
376 ms |
49864 KB |
Output is correct |
4 |
Correct |
406 ms |
51784 KB |
Output is correct |
5 |
Correct |
433 ms |
50248 KB |
Output is correct |
6 |
Correct |
427 ms |
50888 KB |
Output is correct |
7 |
Correct |
427 ms |
51012 KB |
Output is correct |
8 |
Correct |
415 ms |
50380 KB |
Output is correct |
9 |
Correct |
390 ms |
50120 KB |
Output is correct |
10 |
Correct |
392 ms |
49608 KB |
Output is correct |
11 |
Correct |
391 ms |
51592 KB |
Output is correct |
12 |
Correct |
381 ms |
51272 KB |
Output is correct |
13 |
Correct |
404 ms |
51272 KB |
Output is correct |
14 |
Correct |
393 ms |
50120 KB |
Output is correct |
15 |
Correct |
398 ms |
51528 KB |
Output is correct |
16 |
Correct |
403 ms |
51144 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
624 ms |
49200 KB |
Output is correct |
2 |
Correct |
590 ms |
49816 KB |
Output is correct |
3 |
Correct |
595 ms |
50764 KB |
Output is correct |
4 |
Correct |
601 ms |
49084 KB |
Output is correct |
5 |
Correct |
604 ms |
49328 KB |
Output is correct |
6 |
Correct |
645 ms |
49844 KB |
Output is correct |
7 |
Correct |
607 ms |
50716 KB |
Output is correct |
8 |
Correct |
612 ms |
50224 KB |
Output is correct |
9 |
Correct |
610 ms |
49460 KB |
Output is correct |
10 |
Correct |
622 ms |
50092 KB |
Output is correct |
11 |
Correct |
651 ms |
49720 KB |
Output is correct |
12 |
Correct |
640 ms |
49844 KB |
Output is correct |
13 |
Correct |
608 ms |
49588 KB |
Output is correct |
14 |
Correct |
616 ms |
49716 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5 ms |
640 KB |
Output is correct |
2 |
Correct |
5 ms |
768 KB |
Output is correct |
3 |
Correct |
5 ms |
768 KB |
Output is correct |
4 |
Correct |
5 ms |
768 KB |
Output is correct |
5 |
Correct |
5 ms |
768 KB |
Output is correct |
6 |
Correct |
5 ms |
768 KB |
Output is correct |
7 |
Correct |
5 ms |
768 KB |
Output is correct |
8 |
Correct |
5 ms |
768 KB |
Output is correct |
9 |
Correct |
5 ms |
768 KB |
Output is correct |
10 |
Correct |
5 ms |
768 KB |
Output is correct |
11 |
Correct |
5 ms |
768 KB |
Output is correct |
12 |
Correct |
5 ms |
768 KB |
Output is correct |
13 |
Correct |
5 ms |
768 KB |
Output is correct |
14 |
Correct |
5 ms |
768 KB |
Output is correct |
15 |
Correct |
5 ms |
768 KB |
Output is correct |
16 |
Correct |
5 ms |
768 KB |
Output is correct |
17 |
Correct |
5 ms |
768 KB |
Output is correct |
18 |
Correct |
5 ms |
768 KB |
Output is correct |
19 |
Correct |
5 ms |
768 KB |
Output is correct |
20 |
Correct |
5 ms |
768 KB |
Output is correct |
21 |
Correct |
5 ms |
768 KB |
Output is correct |
22 |
Correct |
5 ms |
768 KB |
Output is correct |
23 |
Correct |
5 ms |
768 KB |
Output is correct |
24 |
Correct |
5 ms |
768 KB |
Output is correct |
25 |
Correct |
5 ms |
768 KB |
Output is correct |
26 |
Correct |
5 ms |
768 KB |
Output is correct |
27 |
Correct |
5 ms |
768 KB |
Output is correct |
28 |
Correct |
6 ms |
768 KB |
Output is correct |
29 |
Correct |
5 ms |
768 KB |
Output is correct |
30 |
Correct |
5 ms |
768 KB |
Output is correct |
31 |
Correct |
5 ms |
768 KB |
Output is correct |
32 |
Correct |
5 ms |
768 KB |
Output is correct |
33 |
Correct |
439 ms |
51272 KB |
Output is correct |
34 |
Correct |
437 ms |
52072 KB |
Output is correct |
35 |
Correct |
446 ms |
52296 KB |
Output is correct |
36 |
Correct |
413 ms |
51272 KB |
Output is correct |
37 |
Correct |
433 ms |
51092 KB |
Output is correct |
38 |
Correct |
424 ms |
51780 KB |
Output is correct |
39 |
Correct |
434 ms |
51656 KB |
Output is correct |
40 |
Correct |
432 ms |
50760 KB |
Output is correct |
41 |
Correct |
453 ms |
52348 KB |
Output is correct |
42 |
Correct |
450 ms |
51128 KB |
Output is correct |
43 |
Correct |
474 ms |
52560 KB |
Output is correct |
44 |
Correct |
432 ms |
52512 KB |
Output is correct |
45 |
Correct |
425 ms |
50736 KB |
Output is correct |
46 |
Correct |
446 ms |
52168 KB |
Output is correct |
47 |
Correct |
418 ms |
51396 KB |
Output is correct |
48 |
Correct |
407 ms |
50632 KB |
Output is correct |
49 |
Correct |
428 ms |
51656 KB |
Output is correct |
50 |
Correct |
424 ms |
52684 KB |
Output is correct |
51 |
Correct |
456 ms |
52528 KB |
Output is correct |
52 |
Correct |
417 ms |
51528 KB |
Output is correct |
53 |
Correct |
430 ms |
51464 KB |
Output is correct |
54 |
Correct |
451 ms |
51144 KB |
Output is correct |
55 |
Correct |
451 ms |
51656 KB |
Output is correct |
56 |
Correct |
472 ms |
51896 KB |
Output is correct |
57 |
Correct |
458 ms |
51400 KB |
Output is correct |
58 |
Correct |
467 ms |
52296 KB |
Output is correct |
59 |
Correct |
371 ms |
51528 KB |
Output is correct |
60 |
Correct |
370 ms |
51252 KB |
Output is correct |
61 |
Correct |
363 ms |
51572 KB |
Output is correct |
62 |
Correct |
367 ms |
52272 KB |
Output is correct |
63 |
Correct |
386 ms |
51700 KB |
Output is correct |
64 |
Correct |
391 ms |
52028 KB |
Output is correct |
65 |
Correct |
360 ms |
52552 KB |
Output is correct |
66 |
Correct |
367 ms |
52040 KB |
Output is correct |
67 |
Correct |
359 ms |
50888 KB |
Output is correct |
68 |
Correct |
367 ms |
52300 KB |
Output is correct |
69 |
Correct |
350 ms |
50760 KB |
Output is correct |
70 |
Correct |
367 ms |
52168 KB |
Output is correct |
71 |
Correct |
357 ms |
52168 KB |
Output is correct |
72 |
Correct |
370 ms |
52172 KB |
Output is correct |
73 |
Correct |
353 ms |
51620 KB |
Output is correct |
74 |
Correct |
404 ms |
50636 KB |
Output is correct |
75 |
Correct |
376 ms |
49864 KB |
Output is correct |
76 |
Correct |
406 ms |
51784 KB |
Output is correct |
77 |
Correct |
433 ms |
50248 KB |
Output is correct |
78 |
Correct |
427 ms |
50888 KB |
Output is correct |
79 |
Correct |
427 ms |
51012 KB |
Output is correct |
80 |
Correct |
415 ms |
50380 KB |
Output is correct |
81 |
Correct |
390 ms |
50120 KB |
Output is correct |
82 |
Correct |
392 ms |
49608 KB |
Output is correct |
83 |
Correct |
391 ms |
51592 KB |
Output is correct |
84 |
Correct |
381 ms |
51272 KB |
Output is correct |
85 |
Correct |
404 ms |
51272 KB |
Output is correct |
86 |
Correct |
393 ms |
50120 KB |
Output is correct |
87 |
Correct |
398 ms |
51528 KB |
Output is correct |
88 |
Correct |
403 ms |
51144 KB |
Output is correct |
89 |
Correct |
624 ms |
49200 KB |
Output is correct |
90 |
Correct |
590 ms |
49816 KB |
Output is correct |
91 |
Correct |
595 ms |
50764 KB |
Output is correct |
92 |
Correct |
601 ms |
49084 KB |
Output is correct |
93 |
Correct |
604 ms |
49328 KB |
Output is correct |
94 |
Correct |
645 ms |
49844 KB |
Output is correct |
95 |
Correct |
607 ms |
50716 KB |
Output is correct |
96 |
Correct |
612 ms |
50224 KB |
Output is correct |
97 |
Correct |
610 ms |
49460 KB |
Output is correct |
98 |
Correct |
622 ms |
50092 KB |
Output is correct |
99 |
Correct |
651 ms |
49720 KB |
Output is correct |
100 |
Correct |
640 ms |
49844 KB |
Output is correct |
101 |
Correct |
608 ms |
49588 KB |
Output is correct |
102 |
Correct |
616 ms |
49716 KB |
Output is correct |