Submission #236909

# Submission time Handle Problem Language Result Execution time Memory
236909 2020-06-03T18:04:23 Z rajarshi_basu Fire (JOI20_ho_t5) C++14
100 / 100
652 ms 55724 KB
#include <stdio.h>     
#include <stdlib.h>    
#include <iostream>
#include <vector>
#include <algorithm>
#include <fstream>
#include <queue>
#include <deque>
#include <iomanip>
#include <cmath>
#include <set>
#include <stack>
#include <map>
#include <unordered_map>
 
#define FOR(i,n) for(int i=0;i<n;i++)
#define FORE(i,a,b) for(int i=a;i<=b;i++)
#define ll long long 
#define ld long double
//#define int ll
//#define int short
#define vi vector<int>
#define pb push_back
#define ff first
#define ss second
#define ii pair<int,int>
#define iii pair<int,ii>
#define iiii pair<iii,int>
#define pll pair<ll,ll>
#define plll pair<ll,pll>
//#define mp make_pair
#define vv vector
#define endl '\n'
 
using namespace std;

const int MAXN = 200*1000 + 5;
const int MAXT = 263*1000;

struct SegmentTree{
	ll st[2*MAXT];
	void update(int node,int ss,int se,int pos,ll val){
		if(pos < ss or se < pos)return;
		if(ss == se){
			st[node] = val;
			return;
		}
		int mid = (ss+se)/2;
		update(node*2+1,ss,mid,pos,val);
		update(node*2+2,mid+1,se,pos,val);
		st[node] = st[node*2+1]+st[node*2+2];
	}
	ll get(int node,int ss,int se,int l,int r){
		if(l > se or r < ss)return 0;
		if(l <= ss and se <= r)return st[node];
		int mid = (ss+se)/2;
		return get(node*2+1,ss,mid,l,r)+get(node*2+2,mid+1,se,l,r);
	}
};

struct FenwickTree{
	ll BITree[MAXN];
	ll getSum(int index) { 
	    ll sum = 0;
	    index = index + 1; 
	    while (index>0){ 
	        sum += BITree[index]; 
	        index -= index & (-index); 
	    } 
	    return sum; 
	} 
	void updateBIT(int index, ll val) { 
	    index = index + 1; 
	  	while (index <= MAXN){ 
	    	BITree[index] += val; 
		    index += index & (-index); 
	    } 
	} 
	void update(int a,int b,int c,int d,ll val){
		updateBIT(d,val - get(a,b,c,d,d));
	}
	ll get(int a,int b,int c,int l,int r){
		ll cost = getSum(r);
		if(l != 0)cost -= getSum(l-1);
		return cost;
	}
};


/*
stage 1: still growing towards left. : sum of elements*time
stage 2(a): end growing and stabilise: sum of elementrange.
stage 2(b): grow and decay, hence no change: sum of element range 
stage 3: just decay: sum(elementrange) - sum(element size)*time
stage 4: dead. We dont really need to keep track of this.

// lets see how we can better the implementation. We have a period when there is a growth
and then we have a period where there is a decay. Stage 2(a/b) can be calculated in terms of those. 
stage 4 is bleh, just kick it out. 
growth_end(i) = time when growth stops. 
decay_start(i) = time when decay starts. 
dead(i) = when we dont need to consider it. 

for every viable i, ans is Arr[i]*(min(growth_end(i),t) - max(0,t-decay_start(i)))
=> Arr[i]*(min(growth_end(i),t)) - Arr[i]*(max(0,t-decay_start(i)));
*/
int D = 0;
int n;
struct Event{
	// =1 means growth_end(i) has been reached, and it wont grow anymore;
	// =2 means decay has been started.
	// type2 = ded.
	int type; 
	int time;
	int item;
	Event(int a,int b,int c){
		type = a;
		time = b;
		item = c;
	} 
};	


int prev_greater[MAXN];
int next_greater[MAXN];
ll arr[MAXN];

void generateGreaters(int n){
	stack<int> st1;
	stack<int> st2;
	FOR(i,n){
		while(!st1.empty() and arr[st1.top()] < arr[i])st1.pop();
		if(st1.empty())prev_greater[i] = -3*n;
		else prev_greater[i] = st1.top();
		st1.push(i);

		while(!st2.empty() and arr[st2.top()] <= arr[n-i-1])st2.pop();
		if(st2.empty())next_greater[n-i-1] = n;
		else next_greater[n-i-1] = st2.top();
		st2.push(n-i-1);
	}
}

vv<Event> eventlist;
void formEventList(int n){
	FOR(i,n){
		int delta1 = next_greater[i] - i;
		eventlist.pb(Event(1,delta1,i));

		int delta2 = i - prev_greater[i];
		delta2--;
		eventlist.pb(Event(2,delta2,i));

		eventlist.pb(Event(3,delta2+delta1,i));
	}
	sort(eventlist.begin(), eventlist.end(),[&](Event e1,Event e2){
		if(e1.time == e2.time)return e1.type < e2.type;
		return e1.time < e2.time;
	});
}

FenwickTree fenwick_expansion;// for expansion
FenwickTree fenwick_stable;// when no expansion
FenwickTree fenwick_decay;// when there is decay
FenwickTree fenwick_decay_helper;

bool growthState[MAXN];
bool stableState[MAXN];
bool decayState[MAXN];
bool deadState[MAXN];

const int LOGN = 18;
ll sparseTable[LOGN][MAXN];

void generateSparseTable(){
	FOR(i,n)sparseTable[0][i] = prev_greater[i];
	FORE(i,1,LOGN-1){
		FOR(j,n){
			int p = sparseTable[i-1][j];
			if(p < 0 )sparseTable[i][j] = p;
			else sparseTable[i][j] = sparseTable[i-1][p];
		}
	}
}

ll getAnsForPrefix(int x,int t){
	ll cost = 0;
	int xcp = x;

	for(int goUp = LOGN-1;goUp >= 0;goUp--){
		if(sparseTable[goUp][x] >= 0 and xcp-sparseTable[goUp][x] <= t){
			x = sparseTable[goUp][x];
		}
	}
	//x = prev_greater[x];
	//while(x >= 0 and xcp-prev_greater[x]<=t)x = prev_greater[x];


	//if(D)cout << "PREFIX: " << xcp << " " << x << endl;
	cost += fenwick_expansion.get(0,0,n,0,x)*(t+1);// the expansion
	//if(D)cout << "cost1 : " << cost << endl;
	cost += fenwick_stable.get(0,0,n,0,x);
	//if(D)cout << "cost2 : " << cost << endl;
	cost -= fenwick_decay.get(0,0,n,0,x)*(t) - fenwick_decay_helper.get(0,0,n,0,x);
	//if(D)cout << "cost3 : " << cost << endl;
	// now fix for the right most point;
	
	cost -= (arr[x])*(min(max(0,t-(xcp-x)),(next_greater[x]-xcp-1)));
	//if(D)cout << "cost4 : " << cost << endl;
	//if(D)cout << endl;
	return cost;
}


signed main(){
	ios_base::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int q;
	cin >> n >> q;
	FOR(i,n)cin >> arr[i];
	iiii queries[q];
	FOR(i,q){
		int a,b,c;
		cin >> a >> b >> c;
		b--;c--;
		queries[i] = {{a,{b,c}},i};
	}
	sort(queries,queries+q);

	generateGreaters(n);
	formEventList(n);
	generateSparseTable();

	reverse(eventlist.begin(), eventlist.end());
	//
	//if(D)cout << "OUTPUT DATA : " << endl;
	//FOR(i,n)if(D)cout << next_greater[i] << " ";if(D)cout << endl;
	//FOR(i,n)if(D)cout << prev_greater[i] << " ";if(D)cout << endl;
	//if(D)cout << "EVENTS:" << endl;
	for(auto e : eventlist){
	//	if(D)cout << e.type << " " << e.item << " " << e.time << endl;
	}

	//if(D)cout << "ACTUAL OUTPUT " << endl;
	FOR(i,n)growthState[i] = 1;
	FOR(i,n)fenwick_expansion.update(0,0,n,i,arr[i]);
	ll ans[q];
	for(auto f : queries){
		auto e = f.ff;
		int t = e.ff;
		int a = e.ss.ff;int b = e.ss.ss;
		//if(D)cout << "QUERY: " << t << " " << a << " " << b << endl;
		// at time t, in range a to b;
		while(!eventlist.empty() and eventlist.back().time <= t){
			// we have got more events to process yay !!
			Event e = eventlist.back();eventlist.pop_back();
			int i = e.item;
			if(e.type == 1){
				fenwick_expansion.update(0,0,n,i,0);
				fenwick_stable.update(0,0,n,i,arr[i]*e.time);
				growthState[i] = 0;
				stableState[i] = 1;

			}else if(e.type == 2){
				fenwick_decay.update(0,0,n,i,arr[i]);
				fenwick_decay_helper.update(0,0,n,i,arr[i]*e.time);
				decayState[i] = 1;
			}else{
				// the first two are redundant
				//fenwick_expansion.update(0,0,n,e.item,0);
				fenwick_stable.update(0,0,n,i,0);
				fenwick_decay_helper.update(0,0,n,i,0);
				fenwick_decay.update(0,0,n,i,0);
				decayState[i] = 0;growthState[i] =0; growthState[i] = 0;
				deadState[i] = 1;
			}
		}

		ll cost = getAnsForPrefix(b,t);
		if(a != 0)cost -= getAnsForPrefix(a-1,t);
		ans[f.ss] = cost;
		//if(D)cout << cost << endl;
	}

	if(D)cout << endl;

	FOR(i,q){
		cout << ans[i] << endl;
	}

	return 0;
}

Compilation message

ho_t5.cpp: In function 'int main()':
ho_t5.cpp:241:11: warning: variable 'e' set but not used [-Wunused-but-set-variable]
  for(auto e : eventlist){
           ^
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 5 ms 768 KB Output is correct
3 Correct 5 ms 768 KB Output is correct
4 Correct 5 ms 768 KB Output is correct
5 Correct 5 ms 768 KB Output is correct
6 Correct 5 ms 768 KB Output is correct
7 Correct 5 ms 640 KB Output is correct
8 Correct 5 ms 768 KB Output is correct
9 Correct 5 ms 768 KB Output is correct
10 Correct 5 ms 896 KB Output is correct
11 Correct 5 ms 768 KB Output is correct
12 Correct 5 ms 768 KB Output is correct
13 Correct 5 ms 768 KB Output is correct
14 Correct 5 ms 768 KB Output is correct
15 Correct 5 ms 768 KB Output is correct
16 Correct 5 ms 768 KB Output is correct
17 Correct 5 ms 768 KB Output is correct
18 Correct 5 ms 768 KB Output is correct
19 Correct 5 ms 768 KB Output is correct
20 Correct 5 ms 768 KB Output is correct
21 Correct 5 ms 768 KB Output is correct
22 Correct 5 ms 768 KB Output is correct
23 Correct 5 ms 768 KB Output is correct
24 Correct 5 ms 768 KB Output is correct
25 Correct 5 ms 768 KB Output is correct
26 Correct 5 ms 768 KB Output is correct
27 Correct 5 ms 768 KB Output is correct
28 Correct 6 ms 768 KB Output is correct
29 Correct 5 ms 768 KB Output is correct
30 Correct 5 ms 768 KB Output is correct
31 Correct 5 ms 768 KB Output is correct
32 Correct 5 ms 768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 395 ms 52296 KB Output is correct
3 Correct 387 ms 51936 KB Output is correct
4 Correct 407 ms 52296 KB Output is correct
5 Correct 375 ms 53064 KB Output is correct
6 Correct 378 ms 52424 KB Output is correct
7 Correct 405 ms 52812 KB Output is correct
8 Correct 427 ms 53320 KB Output is correct
9 Correct 412 ms 52808 KB Output is correct
10 Correct 428 ms 51660 KB Output is correct
11 Correct 428 ms 53064 KB Output is correct
12 Correct 406 ms 51656 KB Output is correct
13 Correct 387 ms 52812 KB Output is correct
14 Correct 390 ms 52808 KB Output is correct
15 Correct 384 ms 53064 KB Output is correct
16 Correct 365 ms 52424 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 419 ms 51404 KB Output is correct
3 Correct 423 ms 50504 KB Output is correct
4 Correct 412 ms 52528 KB Output is correct
5 Correct 415 ms 51144 KB Output is correct
6 Correct 425 ms 51528 KB Output is correct
7 Correct 407 ms 51912 KB Output is correct
8 Correct 419 ms 51228 KB Output is correct
9 Correct 395 ms 50760 KB Output is correct
10 Correct 384 ms 50248 KB Output is correct
11 Correct 398 ms 52368 KB Output is correct
12 Correct 433 ms 52036 KB Output is correct
13 Correct 402 ms 52040 KB Output is correct
14 Correct 403 ms 50888 KB Output is correct
15 Correct 399 ms 52296 KB Output is correct
16 Correct 416 ms 51912 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 624 ms 50104 KB Output is correct
2 Correct 640 ms 54580 KB Output is correct
3 Correct 633 ms 55724 KB Output is correct
4 Correct 625 ms 54080 KB Output is correct
5 Correct 602 ms 54200 KB Output is correct
6 Correct 621 ms 54708 KB Output is correct
7 Correct 605 ms 55596 KB Output is correct
8 Correct 629 ms 54952 KB Output is correct
9 Correct 617 ms 54328 KB Output is correct
10 Correct 640 ms 55088 KB Output is correct
11 Correct 646 ms 54580 KB Output is correct
12 Correct 635 ms 54696 KB Output is correct
13 Correct 652 ms 54580 KB Output is correct
14 Correct 636 ms 54708 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 5 ms 768 KB Output is correct
3 Correct 5 ms 768 KB Output is correct
4 Correct 5 ms 768 KB Output is correct
5 Correct 5 ms 768 KB Output is correct
6 Correct 5 ms 768 KB Output is correct
7 Correct 5 ms 640 KB Output is correct
8 Correct 5 ms 768 KB Output is correct
9 Correct 5 ms 768 KB Output is correct
10 Correct 5 ms 896 KB Output is correct
11 Correct 5 ms 768 KB Output is correct
12 Correct 5 ms 768 KB Output is correct
13 Correct 5 ms 768 KB Output is correct
14 Correct 5 ms 768 KB Output is correct
15 Correct 5 ms 768 KB Output is correct
16 Correct 5 ms 768 KB Output is correct
17 Correct 5 ms 768 KB Output is correct
18 Correct 5 ms 768 KB Output is correct
19 Correct 5 ms 768 KB Output is correct
20 Correct 5 ms 768 KB Output is correct
21 Correct 5 ms 768 KB Output is correct
22 Correct 5 ms 768 KB Output is correct
23 Correct 5 ms 768 KB Output is correct
24 Correct 5 ms 768 KB Output is correct
25 Correct 5 ms 768 KB Output is correct
26 Correct 5 ms 768 KB Output is correct
27 Correct 5 ms 768 KB Output is correct
28 Correct 6 ms 768 KB Output is correct
29 Correct 5 ms 768 KB Output is correct
30 Correct 5 ms 768 KB Output is correct
31 Correct 5 ms 768 KB Output is correct
32 Correct 5 ms 768 KB Output is correct
33 Correct 440 ms 52040 KB Output is correct
34 Correct 445 ms 52936 KB Output is correct
35 Correct 452 ms 53120 KB Output is correct
36 Correct 458 ms 52044 KB Output is correct
37 Correct 438 ms 51924 KB Output is correct
38 Correct 430 ms 52680 KB Output is correct
39 Correct 443 ms 52296 KB Output is correct
40 Correct 443 ms 51784 KB Output is correct
41 Correct 446 ms 53032 KB Output is correct
42 Correct 422 ms 51788 KB Output is correct
43 Correct 436 ms 53448 KB Output is correct
44 Correct 478 ms 53304 KB Output is correct
45 Correct 429 ms 51396 KB Output is correct
46 Correct 429 ms 52936 KB Output is correct
47 Correct 445 ms 52168 KB Output is correct
48 Correct 403 ms 51400 KB Output is correct
49 Correct 420 ms 52428 KB Output is correct
50 Correct 448 ms 53388 KB Output is correct
51 Correct 461 ms 53320 KB Output is correct
52 Correct 426 ms 52296 KB Output is correct
53 Correct 445 ms 52332 KB Output is correct
54 Correct 478 ms 51784 KB Output is correct
55 Correct 515 ms 52424 KB Output is correct
56 Correct 473 ms 52680 KB Output is correct
57 Correct 472 ms 52160 KB Output is correct
58 Correct 486 ms 53168 KB Output is correct
59 Correct 395 ms 52296 KB Output is correct
60 Correct 387 ms 51936 KB Output is correct
61 Correct 407 ms 52296 KB Output is correct
62 Correct 375 ms 53064 KB Output is correct
63 Correct 378 ms 52424 KB Output is correct
64 Correct 405 ms 52812 KB Output is correct
65 Correct 427 ms 53320 KB Output is correct
66 Correct 412 ms 52808 KB Output is correct
67 Correct 428 ms 51660 KB Output is correct
68 Correct 428 ms 53064 KB Output is correct
69 Correct 406 ms 51656 KB Output is correct
70 Correct 387 ms 52812 KB Output is correct
71 Correct 390 ms 52808 KB Output is correct
72 Correct 384 ms 53064 KB Output is correct
73 Correct 365 ms 52424 KB Output is correct
74 Correct 419 ms 51404 KB Output is correct
75 Correct 423 ms 50504 KB Output is correct
76 Correct 412 ms 52528 KB Output is correct
77 Correct 415 ms 51144 KB Output is correct
78 Correct 425 ms 51528 KB Output is correct
79 Correct 407 ms 51912 KB Output is correct
80 Correct 419 ms 51228 KB Output is correct
81 Correct 395 ms 50760 KB Output is correct
82 Correct 384 ms 50248 KB Output is correct
83 Correct 398 ms 52368 KB Output is correct
84 Correct 433 ms 52036 KB Output is correct
85 Correct 402 ms 52040 KB Output is correct
86 Correct 403 ms 50888 KB Output is correct
87 Correct 399 ms 52296 KB Output is correct
88 Correct 416 ms 51912 KB Output is correct
89 Correct 624 ms 50104 KB Output is correct
90 Correct 640 ms 54580 KB Output is correct
91 Correct 633 ms 55724 KB Output is correct
92 Correct 625 ms 54080 KB Output is correct
93 Correct 602 ms 54200 KB Output is correct
94 Correct 621 ms 54708 KB Output is correct
95 Correct 605 ms 55596 KB Output is correct
96 Correct 629 ms 54952 KB Output is correct
97 Correct 617 ms 54328 KB Output is correct
98 Correct 640 ms 55088 KB Output is correct
99 Correct 646 ms 54580 KB Output is correct
100 Correct 635 ms 54696 KB Output is correct
101 Correct 652 ms 54580 KB Output is correct
102 Correct 636 ms 54708 KB Output is correct