Submission #234692

# Submission time Handle Problem Language Result Execution time Memory
234692 2020-05-25T07:59:48 Z AlexLuchianov Construction of Highway (JOI18_construction) C++14
7 / 100
2000 ms 140860 KB
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cassert>
#include <map>
#include <stack>

using namespace std;

using ll = long long;
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MAX(a, b) (((a) < (b)) ? (b) : (a))

int const nmax = 200000;
int v[1 + nmax];
int ord[1 + nmax];

map<int,int> mp;

void normalize(int n){
  vector<int> temp;
  for(int i = 1;i <= n; i++)
    temp.push_back(v[i]);
  sort(temp.begin(), temp.end());
  temp.erase(unique(temp.begin(), temp.end()), temp.end());
  for(int i = 0; i < temp.size(); i++)
    mp[temp[i]] = 1 + i;
  for(int i = 1;i <= n; i++)
    v[i] = mp[v[i]];
}

namespace FenwickTree{
  vector<int> aib;
  int n;
  void initialize(int n_){
    n = n_;
    aib.resize(1 + n);
  }
  int seen[1 + nmax];

  vector<int> touched;

  void clean(){
    for(int h = 0; h < touched.size(); h++) {
      aib[touched[h]] = 0;
      seen[touched[h]] = 0;
    }
  }

  void update(int pos, int val){
    for(int x = pos; x <= n; x += (x ^ (x & (x - 1)))) {
      aib[x] += val;
      if(seen[x] == 0) {
        touched.push_back(x);
        seen[x] = 1;
      }
    }
  }
  int query(int pos){
    int result = 0;
    for(int x = pos; 0 < x; x = (x & (x - 1)))
      result += aib[x];
    return result;
  }
}

int n;

namespace HLD{
  vector<int> g[1 + nmax];
  int far[1 + nmax], sz[1 + nmax];
  void dfs(int node){
    sz[node] = 1;
    for(int h = 0; h < g[node].size(); h++){
      int to = g[node][h];
      far[to] = node;
      dfs(to);
      sz[node] += sz[to];
    }
  }
  int ptr = 0;

  vector<int> path, path_position;
  vector<int> chain_father, chain_size;
  stack<pair<int,int>> st[1 + nmax];

  void _partition(int node, int curr){
    path[node] = curr;
    path_position[node] = ++chain_size[curr];
    if(path_position[node] == 1)
      chain_father[curr] = node;

    int best = 0;
    for(int h = 0; h < g[node].size(); h++){
      int to = g[node][h];
      if(sz[best] < sz[to])
        best = to;
    }
    if(0 < best)
      _partition(best, curr);

    for(int h = 0; h < g[node].size(); h++){
      int to = g[node][h];
      if(to != best)
        _partition(to, ++ptr);
    }
  }

  void intialize(int n){
    path.resize(1 + n);
    path_position.resize(1 + n);
    chain_father.resize(1 + n);
    chain_size.resize(1 + n);

    ptr = 0;
    dfs(1);
    _partition(1, ++ptr);

    for(int i = 1;i <= ptr; i++)
      st[i].push({chain_size[i], 1});
  }

  vector<pair<int,int>> _affect(int chain, int pos, int val){
    vector<pair<int,int>> work;

    int last = 0;
    while(0 < st[chain].size() && st[chain].top().first <= pos){
      work.push_back({st[chain].top().first - last, st[chain].top().second});
      last = st[chain].top().first;
      st[chain].pop();
    }
    if(last < pos && 0 < st[chain].size())
      work.push_back({pos - last, st[chain].top().second});
    st[chain].push({pos, val});
    return work;
  }

  ll query(int node, int val){
    vector<pair<int,int>> work;
    int steps = 0;

    while(0 < node){
      int curr = path[node];
      int pos = path_position[node];
      vector<pair<int,int>> work2 = _affect(curr, pos, val);
      node = far[chain_father[curr]];
      reverse(work2.begin(), work2.end());
      work.insert(work.end(), work2.begin(), work2.end());
      steps++;
      if(40 < steps){
        while(1);
        return 0;
      }
    }
    reverse(work.begin(), work.end());

    ll result = 0;
    FenwickTree::clean();

    for(int i = work.size() - 1; 0 <= i; i--){
      assert(1 <= work[i].second && work[i].second <= n);
      result += 1LL * FenwickTree::query(work[i].second - 1) * work[i].first;
      FenwickTree::update(work[i].second, work[i].first);
    }
    return result;
  }
}

int main()
{
  ios::sync_with_stdio(0);
  cin.tie(0);

  cin >> n;
  for(int i = 1;i <= n; i++)
    cin >> v[i];
  normalize(n);
  ord[1] = 1;
  for(int i = 2; i <= n; i++) {
    int farp;
    cin >> farp >> ord[i];
    HLD::g[farp].push_back(ord[i]);
  }

  HLD::intialize(n);
  FenwickTree::initialize(n);
  for(int i = n;1 <= i; i--)
    HLD::query(ord[i], v[ord[i]]);

  for(int i = 2; i <= n; i++){
    int node = ord[i];
    cout << HLD::query(HLD::far[node], v[node]) << '\n';
  }

  return 0;
}

Compilation message

construction.cpp: In function 'void normalize(int)':
construction.cpp:27:20: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   for(int i = 0; i < temp.size(); i++)
                  ~~^~~~~~~~~~~~~
construction.cpp: In function 'void FenwickTree::clean()':
construction.cpp:45:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for(int h = 0; h < touched.size(); h++) {
                    ~~^~~~~~~~~~~~~~~~
construction.cpp: In function 'void HLD::dfs(int)':
construction.cpp:75:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for(int h = 0; h < g[node].size(); h++){
                    ~~^~~~~~~~~~~~~~~~
construction.cpp: In function 'void HLD::_partition(int, int)':
construction.cpp:95:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for(int h = 0; h < g[node].size(); h++){
                    ~~^~~~~~~~~~~~~~~~
construction.cpp:103:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for(int h = 0; h < g[node].size(); h++){
                    ~~^~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 99 ms 139640 KB Output is correct
2 Correct 98 ms 139640 KB Output is correct
3 Correct 110 ms 139768 KB Output is correct
4 Correct 121 ms 139920 KB Output is correct
5 Correct 155 ms 139896 KB Output is correct
6 Correct 154 ms 139824 KB Output is correct
7 Correct 155 ms 139908 KB Output is correct
8 Correct 123 ms 139768 KB Output is correct
9 Correct 121 ms 139768 KB Output is correct
10 Correct 122 ms 139768 KB Output is correct
11 Correct 140 ms 139896 KB Output is correct
12 Correct 135 ms 139896 KB Output is correct
13 Correct 129 ms 140016 KB Output is correct
14 Correct 137 ms 139968 KB Output is correct
15 Correct 175 ms 139896 KB Output is correct
16 Correct 189 ms 140024 KB Output is correct
17 Correct 191 ms 140024 KB Output is correct
18 Correct 188 ms 140024 KB Output is correct
19 Correct 136 ms 139896 KB Output is correct
20 Correct 136 ms 140024 KB Output is correct
21 Correct 137 ms 139896 KB Output is correct
22 Correct 135 ms 139768 KB Output is correct
23 Correct 140 ms 139896 KB Output is correct
24 Correct 146 ms 139896 KB Output is correct
25 Correct 155 ms 139896 KB Output is correct
26 Correct 129 ms 139768 KB Output is correct
27 Correct 136 ms 139896 KB Output is correct
28 Correct 133 ms 139768 KB Output is correct
29 Correct 132 ms 139768 KB Output is correct
30 Correct 171 ms 139896 KB Output is correct
31 Correct 153 ms 139896 KB Output is correct
32 Correct 135 ms 139768 KB Output is correct
33 Correct 133 ms 139896 KB Output is correct
34 Correct 134 ms 139768 KB Output is correct
35 Correct 135 ms 139896 KB Output is correct
36 Correct 138 ms 139768 KB Output is correct
37 Correct 135 ms 139896 KB Output is correct
38 Correct 132 ms 139768 KB Output is correct
39 Correct 139 ms 139896 KB Output is correct
40 Correct 141 ms 139896 KB Output is correct
41 Correct 143 ms 139892 KB Output is correct
42 Correct 137 ms 139768 KB Output is correct
43 Correct 125 ms 139872 KB Output is correct
44 Correct 139 ms 139896 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 99 ms 139640 KB Output is correct
2 Correct 98 ms 139640 KB Output is correct
3 Correct 110 ms 139768 KB Output is correct
4 Correct 121 ms 139920 KB Output is correct
5 Correct 155 ms 139896 KB Output is correct
6 Correct 154 ms 139824 KB Output is correct
7 Correct 155 ms 139908 KB Output is correct
8 Correct 123 ms 139768 KB Output is correct
9 Correct 121 ms 139768 KB Output is correct
10 Correct 122 ms 139768 KB Output is correct
11 Correct 140 ms 139896 KB Output is correct
12 Correct 135 ms 139896 KB Output is correct
13 Correct 129 ms 140016 KB Output is correct
14 Correct 137 ms 139968 KB Output is correct
15 Correct 175 ms 139896 KB Output is correct
16 Correct 189 ms 140024 KB Output is correct
17 Correct 191 ms 140024 KB Output is correct
18 Correct 188 ms 140024 KB Output is correct
19 Correct 136 ms 139896 KB Output is correct
20 Correct 136 ms 140024 KB Output is correct
21 Correct 137 ms 139896 KB Output is correct
22 Correct 135 ms 139768 KB Output is correct
23 Correct 140 ms 139896 KB Output is correct
24 Correct 146 ms 139896 KB Output is correct
25 Correct 155 ms 139896 KB Output is correct
26 Correct 129 ms 139768 KB Output is correct
27 Correct 136 ms 139896 KB Output is correct
28 Correct 133 ms 139768 KB Output is correct
29 Correct 132 ms 139768 KB Output is correct
30 Correct 171 ms 139896 KB Output is correct
31 Correct 153 ms 139896 KB Output is correct
32 Correct 135 ms 139768 KB Output is correct
33 Correct 133 ms 139896 KB Output is correct
34 Correct 134 ms 139768 KB Output is correct
35 Correct 135 ms 139896 KB Output is correct
36 Correct 138 ms 139768 KB Output is correct
37 Correct 135 ms 139896 KB Output is correct
38 Correct 132 ms 139768 KB Output is correct
39 Correct 139 ms 139896 KB Output is correct
40 Correct 141 ms 139896 KB Output is correct
41 Correct 143 ms 139892 KB Output is correct
42 Correct 137 ms 139768 KB Output is correct
43 Correct 125 ms 139872 KB Output is correct
44 Correct 139 ms 139896 KB Output is correct
45 Correct 304 ms 140408 KB Output is correct
46 Execution timed out 2101 ms 140860 KB Time limit exceeded
47 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 99 ms 139640 KB Output is correct
2 Correct 98 ms 139640 KB Output is correct
3 Correct 110 ms 139768 KB Output is correct
4 Correct 121 ms 139920 KB Output is correct
5 Correct 155 ms 139896 KB Output is correct
6 Correct 154 ms 139824 KB Output is correct
7 Correct 155 ms 139908 KB Output is correct
8 Correct 123 ms 139768 KB Output is correct
9 Correct 121 ms 139768 KB Output is correct
10 Correct 122 ms 139768 KB Output is correct
11 Correct 140 ms 139896 KB Output is correct
12 Correct 135 ms 139896 KB Output is correct
13 Correct 129 ms 140016 KB Output is correct
14 Correct 137 ms 139968 KB Output is correct
15 Correct 175 ms 139896 KB Output is correct
16 Correct 189 ms 140024 KB Output is correct
17 Correct 191 ms 140024 KB Output is correct
18 Correct 188 ms 140024 KB Output is correct
19 Correct 136 ms 139896 KB Output is correct
20 Correct 136 ms 140024 KB Output is correct
21 Correct 137 ms 139896 KB Output is correct
22 Correct 135 ms 139768 KB Output is correct
23 Correct 140 ms 139896 KB Output is correct
24 Correct 146 ms 139896 KB Output is correct
25 Correct 155 ms 139896 KB Output is correct
26 Correct 129 ms 139768 KB Output is correct
27 Correct 136 ms 139896 KB Output is correct
28 Correct 133 ms 139768 KB Output is correct
29 Correct 132 ms 139768 KB Output is correct
30 Correct 171 ms 139896 KB Output is correct
31 Correct 153 ms 139896 KB Output is correct
32 Correct 135 ms 139768 KB Output is correct
33 Correct 133 ms 139896 KB Output is correct
34 Correct 134 ms 139768 KB Output is correct
35 Correct 135 ms 139896 KB Output is correct
36 Correct 138 ms 139768 KB Output is correct
37 Correct 135 ms 139896 KB Output is correct
38 Correct 132 ms 139768 KB Output is correct
39 Correct 139 ms 139896 KB Output is correct
40 Correct 141 ms 139896 KB Output is correct
41 Correct 143 ms 139892 KB Output is correct
42 Correct 137 ms 139768 KB Output is correct
43 Correct 125 ms 139872 KB Output is correct
44 Correct 139 ms 139896 KB Output is correct
45 Correct 304 ms 140408 KB Output is correct
46 Execution timed out 2101 ms 140860 KB Time limit exceeded
47 Halted 0 ms 0 KB -