#include <bits/stdc++.h>
#define DIM 300010
#define INF 2000000000
using namespace std;
vector <int> L[DIM],poz[DIM*4],poz_a[DIM],poz_b[DIM];
int a[DIM],b[DIM],f[DIM],f2[DIM],c[DIM],v[DIM],viz[DIM],E[DIM*4],first[DIM],level[DIM],p[DIM*4],idx[DIM];
int mrk[DIM],fth[DIM],Size[DIM];
int t,n,m,i,j,x,y,k,sol,mini,maxi,ok,g,sol_final,u;
struct seg_tree{
int minia,maxib;
} aint[4*DIM];
struct idk{
int nod, minia, maxib;
} dp[DIM][30];
pair <int,int> rmq[30][DIM*4];
vector <pair<int,int> > aint2[DIM*4];
pair<int,int> s[DIM];
void dfs (int nod){
viz[nod] = 1;
v[++k] = nod;
for (auto vecin : L[nod])
if (!viz[vecin])
dfs (vecin);
}
void build (int nod, int st, int dr){
if (st == dr){
aint[nod].minia = a[v[st]];
aint[nod].maxib = b[v[st]];
return;
}
int mid = (st+dr)>>1;
build (nod<<1,st,mid);
build ((nod<<1)|1,mid+1,dr);
aint[nod].minia = min (aint[nod<<1].minia,aint[(nod<<1)|1].minia);
aint[nod].maxib = max (aint[nod<<1].maxib,aint[(nod<<1)|1].maxib);
}
void query (int nod, int st, int dr, int x, int y){
if (x <= st && dr <= y){
mini = min (mini,aint[nod].minia);
maxi = max (maxi,aint[nod].maxib);
return;
}
int mid = (st+dr)>>1;
if (x <= mid)
query(nod<<1,st,mid,x,y);
if (y > mid)
query ((nod<<1)|1,mid+1,dr,x,y);
}
int solve (int v[], int k){
for (i=1;i<=4*k;i++){
poz[i].clear();
aint[i] = {0,0};
}
for (i=1;i<=k;i++)
poz[a[v[i]]].push_back(i);
build (1,1,k);
int ok = 1;
for (i=1;i<=k;i++){
if (a[v[i]] == b[v[i]])
continue;
int lft = 0, rgh = 0;
for (auto it : poz[b[v[i]]]){
if (it < i)
lft = it;
if (it > i){
rgh = it;
break;
}
}
int ok2 = 0;
if (lft){
mini = INF, maxi = -INF;
query (1,1,k,lft,i-1);
if (mini >= b[v[i]] && maxi <= b[v[i]])
ok2 = 1;
}
if (rgh){
mini = INF, maxi = -INF;
query (1,1,k,i+1,rgh);
if (mini >= b[v[i]] && maxi <= b[v[i]])
ok2 = 1;
}
if (!ok2){
ok = 0;
break;
}}
return ok;
}
void dfs2 (int nod){
viz[nod] = 1;
if (nod != i && a[nod] == b[i])
g = 1;
for (auto vecin : L[nod])
if (!viz[vecin])
if (a[vecin] >= b[i] && b[vecin] <= b[i])
dfs2 (vecin);
}
void dfs3 (int nod, int tata){
dp[nod][0] = {tata, a[nod],b[nod]};
E[++k] = nod;
first[nod] = k;
level[nod] = 1 + level[tata];
for (auto vecin : L[nod])
if (vecin != tata){
dfs3 (vecin,nod);
E[++k] = nod;
}
}
int get_lca (int x, int y){
int posx = first[x], posy = first[y];
if (posx > posy)
swap (posx,posy);
int nr = p[posy - posx + 1];
pair <int, int> sol = min (rmq[nr][posx], rmq[nr][posy - (1<<nr) + 1]);
return E[sol.second];
}
void solve2 (int x, int y){
int lca = get_lca (x,y);
for (int i=20;i>=0;i--){
if (dp[x][i].nod && level[dp[x][i].nod] >= level[lca]){
mini = min (mini,dp[x][i].minia);
maxi = max (maxi,dp[x][i].maxib);
x = dp[x][i].nod;
}}
for (int i=20;i>=0;i--){
if (dp[y][i].nod && level[dp[y][i].nod] >= level[lca]){
mini = min (mini,dp[y][i].minia);
maxi = max (maxi,dp[y][i].maxib);
x = dp[y][i].nod;
}}}
void update_aint (int nod, int st, int dr, int x, int y, int a, int b){
if (x <= st && dr <= y){
aint2[nod].push_back(make_pair(a,b));
return;
}
int mid = (st+dr)>>1;
if (x <= mid)
update_aint(nod<<1,st,mid,x,y,a,b);
if (y > mid)
update_aint ((nod<<1)|1,mid+1,dr,x,y,a,b);
}
int get_rad (int x){
while (x != fth[x])
x = fth[x];
return x;
}
void unite (int radx, int rady){
if (radx == rady)
return;
if (Size[radx] < Size[rady])
swap (radx,rady);
/// tin minte o stiva cu update urile pe care le fac ca sa pot sa fac undo
s[++u] = make_pair(radx,rady);
Size[radx] += Size[rady];
fth[rady] = radx;
}
void undo (){
int x = s[u].first, y = s[u].second;
u--;
Size[x] -= Size[y];
fth[y] = y;
}
void query_aint (int nod, int st, int dr){
/// am intrat prima oara in nod, trb sa adaug muchiile
if (!sol_final)
return;
int size_init = u; /// ca sa stiu dupa cate undo uri trb sa fac
for (auto it : aint2[nod]){
int radx = get_rad (it.first), rady = get_rad (it.second);
unite (radx,rady);
}
if (st == dr){ /// acum trb sa fac query ul
/// marchez culorile de a
for (auto it : poz_a[st])
mrk[get_rad(it)] = st;
for (auto it : poz_b[st])
if (mrk[get_rad(it)] != st){
sol_final = 0;
break;
}
} else {
int mid = (st+dr)>>1;
query_aint(nod<<1,st,mid);
query_aint((nod<<1)|1,mid+1,dr);
}
/// am terminat cu nod, trb sa dau undo
int size_fin = u;
for (int i=size_fin;i>size_init;--i)
undo();
}
int main (){
// ifstream cin ("colors2.in");
// ofstream cout ("colors2.out");
cin>>t;
for (int q=1;q<=t;++q){
//if (q == 36)
// q = 36;
cin>>n>>m;
for (i=1;i<=n;++i){
L[i].clear();
poz_a[i].clear();
poz_b[i].clear();
f[i] = mrk[i] = 0;
Size[i] = 1;
fth[i] = i;
}
for (i=1;i<=4*n;++i)
aint2[i].clear();
for (i=1;i<=n;++i){
cin>>a[i];
++f[a[i]];
poz_a[a[i]].push_back(i);
}
int ok = 1;
for (i=1;i<=n;++i){
cin>>b[i];
poz_b[b[i]].push_back(i);
if (b[i] > a[i] || !f[b[i]])
ok = 0;
}
for (i=1;i<=m;++i){
cin>>x>>y;
L[x].push_back(y);
L[y].push_back(x);
/// fac update in aint cu intervalul pt muchia asta
update_aint (1,1,n,max(b[x],b[y]),min(a[x],a[y]),x,y);
}
if (!ok){
cout<<0<<"\n";
continue;
}
if (n == 1 && !m){
if (a[1] == b[1])
cout<<"1\n";
else cout<<"0\n";
continue;
}
if (n == 2 && m == 1){
if ( (a[1] == b[1] && a[2] == b[2]) || (min (a[1],a[2]) == b[1] && min (a[1],a[2]) == b[2]) )
cout<<"1\n";
else cout<<"0\n";
continue;
}
/// graf stea
int nod = 0, cnt = 0;
for (i=1;i<=n;i++){
if (L[i].size() == 1)
cnt++;
else nod = i;
}
if (cnt == n-1){
int maxi = 0, mini = n+1;
for (i=1;i<=n;i++){
if (b[i] == a[i])
continue;
maxi = max (maxi,b[i]);
if (i != nod)
mini = min (mini,b[i]);
}
if (maxi && (maxi > a[nod] || mini < b[nod])){
cout<<"0\n";
continue;
}
/// acum sa vad daca exista b[nod]
int ok = 0;
if (!maxi)
ok = 1;
for (i=1;i<=n;i++)
if (i != nod && b[i] == b[nod]){
ok = 1;
break;
}
cout<<ok<<"\n";
continue;
}
/// graf complet
if (m == 1LL*n*(n-1)/2){
cout<<1<<"\n";
continue;
}
/// lant
int start = 0;
cnt = 0;
for (i=1;i<=n;i++)
if (L[i].size() == 1){
if (!start)
start = i;
cnt++;
}
if (cnt == 2 && m == n-1){
memset (viz,0,sizeof viz); k = 0;
dfs (start);
if (solve (v,k))
cout<<"1\n";
else cout<<"0\n";
continue;
}
/// arbore
if (1LL*n*n <= 5000000){
for (i=1;i<=n;i++){
if (a[i] == b[i])
continue;
for (j=1;j<=n;j++)
viz[j] = 0;
g = 0;
dfs2 (i);
if (!g)
break;
}
if (i > n)
cout<<"1\n";
else cout<<"0\n";
continue;
}
/// permutarea
if (m == n-1){
k = 0;
dfs3 (1,0);
for (i=1;i<=k;i++)
rmq[0][i] = make_pair(level[E[i]],i);
for (i=1;(1<<i)<=k;i++)
for (j=1;j<=k;j++){
rmq[i][j] = rmq[i-1][j];
if (j + (1<<(i-1)) <= k && rmq[i-1][j + (1<<(i-1))].first < rmq[i][j].first)
rmq[i][j] = rmq[i-1][j + (1<<(i-1))];
}
for (i=2;i<=k;i++)
p[i] = p[i/2] + 1;
for (j=1;(1<<j)<=n;j++)
for (i=1;i<=n;i++){
dp[i][j].nod = dp[dp[i][j-1].nod][j-1].nod;
dp[i][j].minia = min (dp[i][j-1].minia, dp[ dp[i][j-1].nod ][j-1].minia);
dp[i][j].maxib = max (dp[i][j-1].maxib, dp[ dp[i][j-1].nod ][j-1].maxib);
}
for (i=1;i<=n;i++)
idx[a[i]] = i;
for (i=1;i<=n;i++){
if (a[i] == b[i])
continue;
mini = INF, maxi = -INF;
solve2 (idx[b[i]],i);
if (mini < b[i] || maxi > b[i])
break;
}
if (i > n)
cout<<"1\n";
else cout<<"0\n";
continue;
}
/// de aici devine interesant
sol_final = 1;
//s.clear();
u = 0;
query_aint (1,1,n);
cout<<sol_final<<"\n";
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
215 ms |
77952 KB |
Output is correct |
2 |
Correct |
110 ms |
78072 KB |
Output is correct |
3 |
Correct |
53 ms |
78488 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
226 ms |
78104 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
416 ms |
79096 KB |
Output is correct |
2 |
Correct |
126 ms |
79104 KB |
Output is correct |
3 |
Correct |
60 ms |
79480 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
416 ms |
79096 KB |
Output is correct |
2 |
Correct |
126 ms |
79104 KB |
Output is correct |
3 |
Correct |
60 ms |
79480 KB |
Output is correct |
4 |
Correct |
696 ms |
79184 KB |
Output is correct |
5 |
Correct |
940 ms |
101072 KB |
Output is correct |
6 |
Correct |
1529 ms |
133732 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
215 ms |
77952 KB |
Output is correct |
2 |
Correct |
110 ms |
78072 KB |
Output is correct |
3 |
Correct |
53 ms |
78488 KB |
Output is correct |
4 |
Correct |
416 ms |
79096 KB |
Output is correct |
5 |
Correct |
126 ms |
79104 KB |
Output is correct |
6 |
Correct |
60 ms |
79480 KB |
Output is correct |
7 |
Correct |
249 ms |
79280 KB |
Output is correct |
8 |
Correct |
127 ms |
79224 KB |
Output is correct |
9 |
Correct |
106 ms |
78200 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
479 ms |
79364 KB |
Output is correct |
2 |
Correct |
1012 ms |
128548 KB |
Output is correct |
3 |
Correct |
1310 ms |
210300 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
157 ms |
79236 KB |
Output is correct |
2 |
Correct |
92 ms |
78400 KB |
Output is correct |
3 |
Correct |
98 ms |
78176 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
215 ms |
77952 KB |
Output is correct |
2 |
Correct |
110 ms |
78072 KB |
Output is correct |
3 |
Correct |
53 ms |
78488 KB |
Output is correct |
4 |
Correct |
226 ms |
78104 KB |
Output is correct |
5 |
Correct |
416 ms |
79096 KB |
Output is correct |
6 |
Correct |
126 ms |
79104 KB |
Output is correct |
7 |
Correct |
60 ms |
79480 KB |
Output is correct |
8 |
Correct |
696 ms |
79184 KB |
Output is correct |
9 |
Correct |
940 ms |
101072 KB |
Output is correct |
10 |
Correct |
1529 ms |
133732 KB |
Output is correct |
11 |
Correct |
249 ms |
79280 KB |
Output is correct |
12 |
Correct |
127 ms |
79224 KB |
Output is correct |
13 |
Correct |
106 ms |
78200 KB |
Output is correct |
14 |
Correct |
479 ms |
79364 KB |
Output is correct |
15 |
Correct |
1012 ms |
128548 KB |
Output is correct |
16 |
Correct |
1310 ms |
210300 KB |
Output is correct |
17 |
Correct |
157 ms |
79236 KB |
Output is correct |
18 |
Correct |
92 ms |
78400 KB |
Output is correct |
19 |
Correct |
98 ms |
78176 KB |
Output is correct |
20 |
Correct |
367 ms |
78320 KB |
Output is correct |
21 |
Correct |
979 ms |
100308 KB |
Output is correct |
22 |
Correct |
1275 ms |
141920 KB |
Output is correct |