Submission #224463

#TimeUsernameProblemLanguageResultExecution timeMemory
224463rama_pangSimurgh (IOI17_simurgh)C++14
100 / 100
228 ms4856 KiB
#include "simurgh.h" #include <bits/stdc++.h> using namespace std; class DisjointSet { private: vector<int> p; vector<int> sz; public: DisjointSet() {} DisjointSet(int n) { p.assign(n, 0); iota(begin(p), end(p), 0); sz.assign(n, 1); } int Find(int x) { return p[x] == x ? x : p[x] = Find(p[x]); } bool Unite(int x, int y) { x = Find(x), y = Find(y); if (x == y) return false; if (sz[x] > sz[y]) swap(x, y); p[x] = y; sz[y] += sz[x]; return true; } bool SameSet(int x, int y) { return Find(x) == Find(y); } }; vector<int> find_roads(int n, vector<int> u, vector<int> v) { int m = u.size(); DisjointSet dsu(n); vector<int> T; // Spanning Tree of G vector<vector<int>> Tadj(n); vector<int> Tpar(n, -1); vector<int> Tdepth(n, 0); vector<bool> inT(m, false); vector<int> is_royal(m, -1); // undetermined: -1, not royal: 0, royal: 1 for (int i = 0; i < m; i++) { if (dsu.Unite(u[i], v[i])) { inT[i] = true; T.emplace_back(i); Tadj[u[i]].emplace_back(i); Tadj[v[i]].emplace_back(i); } } int Troyal = count_common_roads(T); function<void(int, int)> dfs = [&](int cur, int p) { for (auto e : Tadj[cur]) { int nxt = (u[e] == cur ? v[e] : u[e]); if (nxt != p) { Tpar[nxt] = e; Tdepth[nxt] = Tdepth[cur] + 1; dfs(nxt, cur); } } }; function<void(int)> determine = [&](int edge) { function<int(vector<int> T_, int, int)> Query = [&](vector<int> T_, int remove, int add) { replace(begin(T_), end(T_), remove, add); return count_common_roads(T_); }; vector<int> C; // Cycle int a = u[edge], b = v[edge]; // Get edges of T in the cycle if (Tdepth[a] > Tdepth[b]) swap(a, b); while (Tdepth[b] > Tdepth[a]) { C.emplace_back(Tpar[b]); b = (u[Tpar[b]] == b ? v[Tpar[b]] : u[Tpar[b]]); } while (a != b) { C.emplace_back(Tpar[a]); C.emplace_back(Tpar[b]); a = (u[Tpar[a]] == a ? v[Tpar[a]] : u[Tpar[a]]); b = (u[Tpar[b]] == b ? v[Tpar[b]] : u[Tpar[b]]); } // check if there is an already determined edge for (auto e : C) { if (is_royal[edge] == -1 && is_royal[e] != -1) { // there is an already determined edge int Nroyal = Query(T, e, edge); if (Nroyal == Troyal) { is_royal[edge] = is_royal[e]; } else { is_royal[edge] = is_royal[e] ? 0 : 1; } } } // all edges are undetermined, check each of them if (is_royal[edge] == -1) { vector<int> same; for (auto e : C) { int Nroyal = Query(T, e, edge); if (Nroyal == Troyal) { same.emplace_back(e); } else if (Nroyal < Troyal) { // e is a royal road while edge isn't is_royal[e] = 1; is_royal[edge] = 0; break; } else if (Nroyal > Troyal) { // e isn't a royal road while edge is is_royal[e] = 0; is_royal[edge] = 1; break; } } if (is_royal[edge] == -1) { // royal roads will never form a cycle is_royal[edge] = 0; } // update edges which have the same royality as edge for (auto e : same) { is_royal[e] = is_royal[edge]; } } // we have determined edge, now to determine other edges in the cycle for (auto e : C) { if (is_royal[e] == -1) { int Nroyal = Query(T, e, edge); if (Nroyal == Troyal) { is_royal[e] = is_royal[edge]; } else { is_royal[e] = is_royal[edge] ? 0 : 1; } } } for (auto e : C) { // create connected component with determined edges dsu.Unite(u[e], v[e]); } }; function<void(int, vector<int>)> find_royal = [&](int vertex, vector<int> adjacent) { function<int(vector<int>, vector<int>)> Query = [&](vector<int> T_, vector<int> E) { // complete the golden set E with edges from T_ DisjointSet d(n); for (auto e : E) { d.Unite(u[e], v[e]); } int royals_from_T = 0; for (auto e : T_) { if (d.Unite(u[e], v[e])) { royals_from_T += is_royal[e]; E.emplace_back(e); } } return count_common_roads(E) - royals_from_T; }; int count_royals = Query(T, adjacent); for (int L = 0; count_royals > 0; count_royals--) { int lo = L; int hi = (int) adjacent.size() - 1; while (lo < hi) { int mid = (lo + hi) / 2; vector<int> E(begin(adjacent) + L, begin(adjacent) + mid + 1); if (Query(T, E) > 0) { hi = mid; } else { lo = mid + 1; } } is_royal[adjacent[lo]] = 1; L = lo + 1; } for (auto e : adjacent) { if (is_royal[e] == -1) { is_royal[e] = 0; } } }; dfs(0, -1); dsu = DisjointSet(n); // determine whether edges from u[i] and v[i] are all determined for (int i = 0; i < m; i++) { if (inT[i]) continue; // edge is in T if (dsu.SameSet(u[i], v[i])) continue; // all edges from u to v is already determined determine(i); // determine royalities of cycle from u[i] to v[i] } for (auto e : T) { if (is_royal[e] == -1) { // if an edge in T is undetermined, that means it is a bridge is_royal[e] = 1; } } vector<vector<int>> adj(n); for (int i = 0; i < m; i++) { if (inT[i]) continue; adj[u[i]].emplace_back(i); } // we have determined all roads in T, determine the remaining royal roads with binary search for (int i = 0; i < n; i++) { find_royal(i, adj[i]); } vector<int> royal_roads; for (int i = 0; i < m; i++) { if (is_royal[i] == 1) { royal_roads.emplace_back(i); } } return royal_roads; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...