Submission #220728

# Submission time Handle Problem Language Result Execution time Memory
220728 2020-04-08T13:32:27 Z balbit Collapse (JOI18_collapse) C++14
100 / 100
11869 ms 28400 KB
#include "collapse.h"
#include <bits/stdc++.h>
#pragma GCC optimize("O3", "unroll-loops")
using namespace std;
#define ll long long
#define pii pair<int, int>
#define ull unsigned ll
#define f first
#define s second
#define ALL(x) x.begin(),x.end()
#define SZ(x) (int)x.size()
#define SQ(x) (x)*(x)
#define MN(a,b) a = min(a,(__typeof__(a))(b))
#define MX(a,b) a = max(a,(__typeof__(a))(b))
#define pb push_back
#define SORT_UNIQUE(c) (sort(c.begin(),c.end()), c.resize(distance(c.begin(),unique(c.begin(),c.end()))))
#ifdef BALBIT
#define IOS()
#define bug(...) fprintf(stderr,"#%d (%s) = ",__LINE__,#__VA_ARGS__),_do(__VA_ARGS__);
template<typename T> void _do(T &&x){cerr<<x<<endl;}
template<typename T, typename ...S> void _do(T &&x, S &&...y){cerr<<x<<", ";_do(y...);}
#else
#define IOS() ios_base::sync_with_stdio(0);cin.tie(0);
#define endl '\n'
#define bug(...)
#endif

const int iinf = 1<<29;
const ll inf = 1ll<<60;
const ll mod = 998244353 ;


void GG(){cout<<"0\n"; exit(0);}

ll mpow(ll a, ll n, ll mo = mod){ // a^n % mod
    ll re=1;
    while (n>0){
        if (n&1) re = re*a %mo;
        a = a*a %mo;
        n>>=1;
    }
    return re;
}

ll inv (ll b, ll mo = mod){
    if (b==1) return b;
    return (mo-mo/b) * inv(mo%b) % mo;
}

const int maxn = 1e5+5;
const int BS = 150;

int state[maxn];
int ndel = 0; // Number of things that are connected
int ans[maxn], sz[maxn];
int par[maxn];
vector<int> stk;
int find(int x){
    return x == par[x]?x:find(par[x]);
}
void setup(){
    ndel = 0;
    stk.clear();
    for (int i = 0; i<maxn; ++i) par[i] = i, sz[i] = 1;
}
inline void undo(){
    if (!stk.empty()) {
        --ndel;
        sz[par[stk.back()]] -= sz[stk.back()];
        par[stk.back()] = stk.back();
        stk.pop_back();
    }
}
inline bool merge(int a, int b) {
    a = find(a); b = find(b);
    if (a == b) return 0;
    ++ndel;
    if (sz[a] < sz[b]) {
        swap(a,b);
    }
    stk.pb(b);
    sz[a] += sz[b];
    par[b] = a;
    return 1;
}

vector<pii > g[maxn]; // to, time
vector<pii> quat[maxn]; // For this position, what time do I query and what id is it?
int itof[maxn];
int ID[maxn];
bool notsure[maxn];
void go(int n,vector<int> TP,vector<int> X,vector<int> Y,vector<int> W,vector<int> P) {
    // TP: query type, 0 is add, 1 is delete
    // X,Y: Edge endpoints
    // W: Query time
    // P: Query position
    // n: Length of the country
     memset(itof, 0, sizeof itof);
    int m = SZ(X), q = SZ(W);


    // SQRT by Time
    for (int t = 0; t<m; t += BS) {
        int t2 = min(m, t+BS);
        for (int i = t; i<t2; ++i) {
            notsure[ID[i]] = 1;
        }
        setup();
        for (int i = 0; i<n; ++i) {
            for (pii x : g[i]) {
                if (!notsure[x.s] && state[x.s]) {
                    merge(x.f,i);
                }
            }
            while (itof[i] < SZ(quat[i]) && quat[i][itof[i]] .f < t2) {
                int T = quat[i][itof[i]] .f, ansit = quat[i][itof[i]].s;
                assert(T >= t && T < t2);
                int nund = 0; // number of necessary undoes
                for (int j = t; j<=T; ++j) {
                    state[ID[j]]^=1;
                }
                for (int j = t; j<t2; ++j) {
                    if (Y[j] <=i && state[ID[j]]) {
                        nund += merge(X[j], Y[j]);
                    }
                }
                for (int j = t; j<=T; ++j) {
                    state[ID[j]]^=1;
                }
                ans[ansit] += ndel;
                ++itof[i];
                for (int cnt = 0; cnt < nund; ++cnt) undo();
            }
        }
        for (int i = t; i<t2; ++i) {
            state[ID[i]]^=1;
            notsure[ID[i]] = 0;
        }
    }

}

vector<int> simulateCollapse(int n,vector<int> T,vector<int> X,vector<int> Y,vector<int> W,vector<int> P){
    int q = SZ(P);
    vector<pii> all;
    for (int i = 0; i<SZ(X); ++i) {
        if (X[i] > Y[i]) swap(X[i], Y[i]);
        all.pb({X[i], Y[i]});
    }
    SORT_UNIQUE(all);
    for (int i = 0; i<SZ(X); ++i) {
        ID[i] = lower_bound(ALL(all), make_pair(X[i], Y[i])) - all.begin();
    }
    {
        set<pii> tmp;
        for (int i = 0; i<SZ(X); ++i) {
            if (X[i] > Y[i]) swap(X[i], Y[i]);
            if (!tmp.count({X[i], Y[i]})) {
                g[Y[i]].pb({X[i], ID[i]});
                tmp.insert({X[i], Y[i]});
            }
        }
        for (int i = 0; i<SZ(P); ++i) {
            quat[P[i]] .pb ({W[i], i});
        }
        for (int i = 0; i<n; ++i) {
            sort(ALL(quat[i]));
        }
        go(n,T,X,Y,W,P);
    }

    for (int i = 0; i<q; ++i) bug(i,ans[i]);

    for(int i = 0; i<n; ++i) g[i].clear(), quat[i].clear();
    memset(state, 0, sizeof state);
    for (int i = 0; i<SZ(X); ++i) {
        X[i] = n-X[i] - 1;
        Y[i] = n-Y[i] - 1;
    }
    for (int i = 0; i<SZ(P); ++i) {
        P[i] = n-P[i] - 2;
    }

    {
        set<pii> tmp;
        for (int i = 0; i<SZ(X); ++i) {
            if (X[i] > Y[i]) swap(X[i], Y[i]);
            if (!tmp.count({X[i], Y[i]})) {
                g[Y[i]].pb({X[i],ID[i]});
                tmp.insert({X[i], Y[i]});
            }
        }
        for (int i = 0; i<SZ(P); ++i) {
            quat[P[i]] .pb ({W[i], i});
        }
        for (int i = 0; i<n; ++i) {
            sort(ALL(quat[i]));
        }
        go(n,T,X,Y,W,P);
    }

    vector<int> re(q);

    for (int i = 0; i<q; ++i) {
        bug(i, ans[i]);
        re[i] = n-ans[i];
    }

	return re;

}
#ifdef BALBITe
signed main(){
    IOS();
    simulateCollapse(5,)


}
#endif

/*
4 4 9
0 0 2
0 1 3
0 2 3
1 2 3
1 0
1 1
1 2
2 0
2 1
2 2
3 0
3 1
3 2
*/

Compilation message

collapse.cpp: In function 'void go(int, std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>, std::vector<int>)':
collapse.cpp:99:20: warning: unused variable 'q' [-Wunused-variable]
     int m = SZ(X), q = SZ(W);
                    ^
# Verdict Execution time Memory Grader output
1 Correct 19 ms 7040 KB Output is correct
2 Correct 14 ms 6784 KB Output is correct
3 Correct 13 ms 6784 KB Output is correct
4 Correct 15 ms 6784 KB Output is correct
5 Correct 34 ms 7040 KB Output is correct
6 Correct 31 ms 7296 KB Output is correct
7 Correct 10 ms 6912 KB Output is correct
8 Correct 16 ms 6912 KB Output is correct
9 Correct 33 ms 7296 KB Output is correct
10 Correct 38 ms 7424 KB Output is correct
11 Correct 46 ms 7552 KB Output is correct
12 Correct 42 ms 7552 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 47 ms 10100 KB Output is correct
2 Correct 69 ms 10964 KB Output is correct
3 Correct 332 ms 14824 KB Output is correct
4 Correct 108 ms 10988 KB Output is correct
5 Correct 384 ms 15980 KB Output is correct
6 Correct 206 ms 12012 KB Output is correct
7 Correct 908 ms 22120 KB Output is correct
8 Correct 745 ms 19308 KB Output is correct
9 Correct 53 ms 10860 KB Output is correct
10 Correct 82 ms 11372 KB Output is correct
11 Correct 258 ms 11760 KB Output is correct
12 Correct 3248 ms 20104 KB Output is correct
13 Correct 4790 ms 22112 KB Output is correct
14 Correct 10379 ms 24016 KB Output is correct
15 Correct 7986 ms 24420 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 46 ms 10092 KB Output is correct
2 Correct 67 ms 10080 KB Output is correct
3 Correct 83 ms 10472 KB Output is correct
4 Correct 114 ms 10608 KB Output is correct
5 Correct 214 ms 10216 KB Output is correct
6 Correct 225 ms 11240 KB Output is correct
7 Correct 692 ms 18924 KB Output is correct
8 Correct 2559 ms 22576 KB Output is correct
9 Correct 85 ms 12520 KB Output is correct
10 Correct 335 ms 12520 KB Output is correct
11 Correct 8314 ms 25428 KB Output is correct
12 Correct 10661 ms 25200 KB Output is correct
13 Correct 8521 ms 28132 KB Output is correct
14 Correct 10700 ms 27720 KB Output is correct
15 Correct 8417 ms 28400 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 19 ms 7040 KB Output is correct
2 Correct 14 ms 6784 KB Output is correct
3 Correct 13 ms 6784 KB Output is correct
4 Correct 15 ms 6784 KB Output is correct
5 Correct 34 ms 7040 KB Output is correct
6 Correct 31 ms 7296 KB Output is correct
7 Correct 10 ms 6912 KB Output is correct
8 Correct 16 ms 6912 KB Output is correct
9 Correct 33 ms 7296 KB Output is correct
10 Correct 38 ms 7424 KB Output is correct
11 Correct 46 ms 7552 KB Output is correct
12 Correct 42 ms 7552 KB Output is correct
13 Correct 47 ms 10100 KB Output is correct
14 Correct 69 ms 10964 KB Output is correct
15 Correct 332 ms 14824 KB Output is correct
16 Correct 108 ms 10988 KB Output is correct
17 Correct 384 ms 15980 KB Output is correct
18 Correct 206 ms 12012 KB Output is correct
19 Correct 908 ms 22120 KB Output is correct
20 Correct 745 ms 19308 KB Output is correct
21 Correct 53 ms 10860 KB Output is correct
22 Correct 82 ms 11372 KB Output is correct
23 Correct 258 ms 11760 KB Output is correct
24 Correct 3248 ms 20104 KB Output is correct
25 Correct 4790 ms 22112 KB Output is correct
26 Correct 10379 ms 24016 KB Output is correct
27 Correct 7986 ms 24420 KB Output is correct
28 Correct 46 ms 10092 KB Output is correct
29 Correct 67 ms 10080 KB Output is correct
30 Correct 83 ms 10472 KB Output is correct
31 Correct 114 ms 10608 KB Output is correct
32 Correct 214 ms 10216 KB Output is correct
33 Correct 225 ms 11240 KB Output is correct
34 Correct 692 ms 18924 KB Output is correct
35 Correct 2559 ms 22576 KB Output is correct
36 Correct 85 ms 12520 KB Output is correct
37 Correct 335 ms 12520 KB Output is correct
38 Correct 8314 ms 25428 KB Output is correct
39 Correct 10661 ms 25200 KB Output is correct
40 Correct 8521 ms 28132 KB Output is correct
41 Correct 10700 ms 27720 KB Output is correct
42 Correct 8417 ms 28400 KB Output is correct
43 Correct 593 ms 20052 KB Output is correct
44 Correct 897 ms 23548 KB Output is correct
45 Correct 863 ms 21612 KB Output is correct
46 Correct 2118 ms 24768 KB Output is correct
47 Correct 67 ms 13288 KB Output is correct
48 Correct 93 ms 13164 KB Output is correct
49 Correct 338 ms 13672 KB Output is correct
50 Correct 666 ms 15332 KB Output is correct
51 Correct 3668 ms 24084 KB Output is correct
52 Correct 5042 ms 24688 KB Output is correct
53 Correct 4242 ms 24620 KB Output is correct
54 Correct 6394 ms 25512 KB Output is correct
55 Correct 5622 ms 25528 KB Output is correct
56 Correct 6956 ms 26140 KB Output is correct
57 Correct 8422 ms 27112 KB Output is correct
58 Correct 10529 ms 26936 KB Output is correct
59 Correct 9254 ms 27964 KB Output is correct
60 Correct 11869 ms 27744 KB Output is correct