Submission #219103

# Submission time Handle Problem Language Result Execution time Memory
219103 2020-04-03T16:54:45 Z andreiomd Fortune Telling 2 (JOI14_fortune_telling2) C++11
4 / 100
3000 ms 6776 KB
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

typedef pair < int, int > PII;

const int NMAX = 2e5 + 5, KMAX = 2e5 + 5;

int N, K;

PII A[NMAX];

int T[KMAX];

int q;
PII V[KMAX], Q[KMAX];

vector < PII > Queries[NMAX];

/// Fenwick Tree:
int AIB[KMAX];

static inline int UB (int X)
{
    return (X & (-X));
}

static inline void Update_1 (int pos, int val)
{
    for(int i = pos; i <= q; i += UB(i))
        AIB[i] += val;

    return;
}

static inline int Query_1 (int pos)
{
    int r = 0;

    for(int i = pos; i >= 1; i -= UB(i))
        r += AIB[i];

    return r;
}
///

/// Segment Tree:
int AINT[4 * KMAX];

static inline void Update (int Node, int a, int b, int pos, int val)
{
    if(a == b)
    {
        AINT[Node] = val;

        return;
    }

    int Mid = (a + b) >> 1;

    if(pos <= Mid)
        Update(2 * Node, a, Mid, pos, val);

    if(pos > Mid)
        Update(2 * Node + 1, Mid + 1, b, pos, val);

    AINT[Node] = max(AINT[2 * Node], AINT[2 * Node + 1]);

    return;
}

static inline int Query (int Node, int a, int b, int qa, int qb)
{
    if(qa <= a && b <= qb)
        return AINT[Node];

    int Mid = (a + b) >> 1;

    int p1 = 0, p2 = 0;

    if(qa <= Mid)
        p1 = Query(2 * Node, a, Mid, qa, qb);

    if(qb > Mid)
        p2 = Query(2 * Node + 1, Mid + 1, b, qa, qb);

    return max(p1, p2);
}
///

static inline void Read ()
{
    ios_base :: sync_with_stdio(false);
    cin.tie(nullptr);

    cin >> N >> K;

    for(int i = 1; i <= N; ++i)
        cin >> A[i].first >> A[i].second;

    for(int i = 1; i <= K; ++i)
        cin >> T[i], V[i] = {T[i], i};

    return;
}

auto cmp = [] (PII A, PII B)
{
    if(A.first < B.first)
        return 1;

    if(A.first > B.first)
        return 0;

    if(A.second > B.second)
        return 1;

    return 0;
};

static inline void Precalculation ()
{
    sort(V + 1, V + K + 1, cmp);

    Q[++q] = V[1];
    for(int i = 2; i <= K; ++i)
        if(V[i].first != V[i - 1].first)
            Q[++q] = V[i];

    for(int i = 1; i <= q; ++i)
        Update(1, 1, q, i, Q[i].second);

    return;
}

static inline int CB1 (int X)
{
    int Left = 1, Right = q, ans = -1;

    while(Left <= Right)
    {
        int Mid = (Left + Right) >> 1;

        if(Q[Mid].first >= X)
        {
            ans = Mid;

            Right = Mid - 1;
        }
        else
            Left = Mid + 1;
    }

    return ans;
}

static inline int CB2 (int X)
{
    int Left = 1, Right = q, ans = -1;

    while(Left <= Right)
    {
        int Mid = (Left + Right) >> 1;

        if(Q[Mid].first <= X)
        {
            ans = Mid;

            Left = Mid + 1;
        }
        else
            Right = Mid - 1;
    }

    return ans;
}

static inline int Lower (int X)
{
    int Left = 1, Right = q, ans = -1;

    while(Left <= Right)
    {
        int Mid = (Left + Right) >> 1;

        if(Q[Mid].first >= X)
        {
            ans = Mid;

            Right = Mid - 1;
        }
        else
            Left = Mid + 1;
    }

    return ans;
}

static inline void Solve ()
{
    long long ans = 0;

    for(int i = 1; i <= N; ++i)
    {
        int Last_Index = 0;

        int Min = min(A[i].first, A[i].second);
        int Max = max(A[i].first, A[i].second);

        int p1 = CB1(Min);
        int p2 = CB2(Max - 1);

        if(p1 == -1 || (p1 > 0 && Q[p1].first >= Max))
            Last_Index = 0;
        else
            Last_Index = Query(1, 1, q, p1, p2);

        if(Last_Index && A[i].first < A[i].second)
            swap(A[i].first, A[i].second);

        if(Last_Index == K)
        {
            ans += 1LL * A[i].first;

            continue;
        }

        int counts = 0;

        for(int j = Last_Index + 1; j <= K; ++j)
            if(T[j] >= Max)
                ++counts;

        if(counts & 1)
            swap(A[i].first, A[i].second);

        ans += 1LL * A[i].first;

        /// Queries[Last_Index + 1].push_back({Max, i});
    }

    /*
    vector < int > Aux;

    for(int i = K; i >= 1; --i)
        if(!Queries[i].empty())
        {
            Aux.push_back(T[i]);

            for(auto it : Queries[i])
            {
                int Val = it.first;
                int j = it.second;

                int counts = 0;

                for(auto x : Aux)
                    if(x >= Val)
                        ++counts;

                if(counts & 1)
                    swap(A[j].first, A[j].second);

                ans += 1LL * A[j].first;
            }
        }
    */

    cout << ans << '\n';

    return;
}

int main()
{
    Read();

    Precalculation();

    Solve();

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 8 ms 5120 KB Output is correct
2 Correct 8 ms 5120 KB Output is correct
3 Correct 9 ms 5248 KB Output is correct
4 Correct 9 ms 5120 KB Output is correct
5 Correct 8 ms 5120 KB Output is correct
6 Correct 8 ms 5120 KB Output is correct
7 Correct 9 ms 5120 KB Output is correct
8 Correct 8 ms 5120 KB Output is correct
9 Correct 7 ms 5120 KB Output is correct
10 Correct 8 ms 5120 KB Output is correct
11 Correct 9 ms 5120 KB Output is correct
12 Correct 9 ms 5120 KB Output is correct
13 Correct 10 ms 5120 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 5120 KB Output is correct
2 Correct 8 ms 5120 KB Output is correct
3 Correct 9 ms 5248 KB Output is correct
4 Correct 9 ms 5120 KB Output is correct
5 Correct 8 ms 5120 KB Output is correct
6 Correct 8 ms 5120 KB Output is correct
7 Correct 9 ms 5120 KB Output is correct
8 Correct 8 ms 5120 KB Output is correct
9 Correct 7 ms 5120 KB Output is correct
10 Correct 8 ms 5120 KB Output is correct
11 Correct 9 ms 5120 KB Output is correct
12 Correct 9 ms 5120 KB Output is correct
13 Correct 10 ms 5120 KB Output is correct
14 Correct 18 ms 5504 KB Output is correct
15 Correct 30 ms 5888 KB Output is correct
16 Correct 46 ms 6264 KB Output is correct
17 Correct 57 ms 6648 KB Output is correct
18 Correct 56 ms 6648 KB Output is correct
19 Correct 55 ms 6656 KB Output is correct
20 Correct 66 ms 6656 KB Output is correct
21 Correct 51 ms 6656 KB Output is correct
22 Correct 40 ms 6432 KB Output is correct
23 Correct 39 ms 6272 KB Output is correct
24 Correct 38 ms 6272 KB Output is correct
25 Correct 37 ms 6648 KB Output is correct
26 Correct 2207 ms 6676 KB Output is correct
27 Correct 2770 ms 6776 KB Output is correct
28 Correct 1999 ms 6776 KB Output is correct
29 Execution timed out 3084 ms 6648 KB Time limit exceeded
# Verdict Execution time Memory Grader output
1 Correct 8 ms 5120 KB Output is correct
2 Correct 8 ms 5120 KB Output is correct
3 Correct 9 ms 5248 KB Output is correct
4 Correct 9 ms 5120 KB Output is correct
5 Correct 8 ms 5120 KB Output is correct
6 Correct 8 ms 5120 KB Output is correct
7 Correct 9 ms 5120 KB Output is correct
8 Correct 8 ms 5120 KB Output is correct
9 Correct 7 ms 5120 KB Output is correct
10 Correct 8 ms 5120 KB Output is correct
11 Correct 9 ms 5120 KB Output is correct
12 Correct 9 ms 5120 KB Output is correct
13 Correct 10 ms 5120 KB Output is correct
14 Correct 18 ms 5504 KB Output is correct
15 Correct 30 ms 5888 KB Output is correct
16 Correct 46 ms 6264 KB Output is correct
17 Correct 57 ms 6648 KB Output is correct
18 Correct 56 ms 6648 KB Output is correct
19 Correct 55 ms 6656 KB Output is correct
20 Correct 66 ms 6656 KB Output is correct
21 Correct 51 ms 6656 KB Output is correct
22 Correct 40 ms 6432 KB Output is correct
23 Correct 39 ms 6272 KB Output is correct
24 Correct 38 ms 6272 KB Output is correct
25 Correct 37 ms 6648 KB Output is correct
26 Correct 2207 ms 6676 KB Output is correct
27 Correct 2770 ms 6776 KB Output is correct
28 Correct 1999 ms 6776 KB Output is correct
29 Execution timed out 3084 ms 6648 KB Time limit exceeded