Submission #219102

# Submission time Handle Problem Language Result Execution time Memory
219102 2020-04-03T16:53:55 Z andreiomd Fortune Telling 2 (JOI14_fortune_telling2) C++11
4 / 100
3000 ms 6752 KB
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

typedef pair < int, int > PII;

const int NMAX = 2e5 + 5, KMAX = 2e5 + 5;

int N, K;

PII A[NMAX];

int T[KMAX];

int q;
PII V[KMAX], Q[KMAX];

vector < PII > Queries[NMAX];

/// Fenwick Tree:
int AIB[KMAX];

static inline int UB (int X)
{
    return (X & (-X));
}

static inline void Update_1 (int pos, int val)
{
    for(int i = pos; i <= q; i += UB(i))
        AIB[i] += val;

    return;
}

static inline int Query_1 (int pos)
{
    int r = 0;

    for(int i = pos; i >= 1; i -= UB(i))
        r += AIB[i];

    return r;
}
///

/// Segment Tree:
int AINT[4 * KMAX];

static inline void Update (int Node, int a, int b, int pos, int val)
{
    if(a == b)
    {
        AINT[Node] = val;

        return;
    }

    int Mid = (a + b) >> 1;

    if(pos <= Mid)
        Update(2 * Node, a, Mid, pos, val);

    if(pos > Mid)
        Update(2 * Node + 1, Mid + 1, b, pos, val);

    AINT[Node] = max(AINT[2 * Node], AINT[2 * Node + 1]);

    return;
}

static inline int Query (int Node, int a, int b, int qa, int qb)
{
    if(qa <= a && b <= qb)
        return AINT[Node];

    int Mid = (a + b) >> 1;

    int p1 = 0, p2 = 0;

    if(qa <= Mid)
        p1 = Query(2 * Node, a, Mid, qa, qb);

    if(qb > Mid)
        p2 = Query(2 * Node + 1, Mid + 1, b, qa, qb);

    return max(p1, p2);
}
///

static inline void Read ()
{
    ios_base :: sync_with_stdio(false);
    cin.tie(nullptr);

    cin >> N >> K;

    for(int i = 1; i <= N; ++i)
        cin >> A[i].first >> A[i].second;

    for(int i = 1; i <= K; ++i)
        cin >> T[i], V[i] = {T[i], i};

    return;
}

auto cmp = [] (PII A, PII B)
{
    if(A.first < B.first)
        return 1;

    if(A.first > B.first)
        return 0;

    if(A.second > B.second)
        return 1;

    return 0;
};

static inline void Precalculation ()
{
    sort(V + 1, V + K + 1, cmp);

    Q[++q] = V[1];
    for(int i = 2; i <= K; ++i)
        if(V[i].first != V[i - 1].first)
            Q[++q] = V[i];

    for(int i = 1; i <= q; ++i)
        Update(1, 1, q, i, Q[i].second);

    return;
}

static inline int CB1 (int X)
{
    int Left = 1, Right = q, ans = -1;

    while(Left <= Right)
    {
        int Mid = (Left + Right) >> 1;

        if(Q[Mid].first >= X)
        {
            ans = Mid;

            Right = Mid - 1;
        }
        else
            Left = Mid + 1;
    }

    return ans;
}

static inline int CB2 (int X)
{
    int Left = 1, Right = q, ans = -1;

    while(Left <= Right)
    {
        int Mid = (Left + Right) >> 1;

        if(Q[Mid].first <= X)
        {
            ans = Mid;

            Left = Mid + 1;
        }
        else
            Right = Mid - 1;
    }

    return ans;
}

static inline int Lower (int X)
{
    int Left = 1, Right = q, ans = -1;

    while(Left <= Right)
    {
        int Mid = (Left + Right) >> 1;

        if(Q[Mid].first >= X)
        {
            ans = Mid;

            Right = Mid - 1;
        }
        else
            Left = Mid + 1;
    }

    return ans;
}

static inline void Solve ()
{
    long long ans = 0;

    for(int i = 1; i <= N; ++i)
    {
        int Last_Index = 0;

        int Min = min(A[i].first, A[i].second);
        int Max = max(A[i].first, A[i].second);

        int p1 = CB1(Min);
        int p2 = CB2(Max - 1);

        if(p1 == -1 || (p1 > 0 && Q[p1].first >= Max))
            Last_Index = 0;
        else
            Last_Index = Query(1, 1, q, p1, p2);

        if(Last_Index && A[i].first < A[i].second)
            swap(A[i].first, A[i].second);

        if(Last_Index == K)
        {
            ans += 1LL * A[i].first;

            continue;
        }

        int counts = 0;

        for(int j = Last_Index + 1; j <= K; ++j)
            if(T[j] >= Max)
                ++counts;

        if(counts & 1)
            swap(A[i].first, A[i].second);

        ans += 1LL * A[i].first;

        /// Queries[Last_Index + 1].push_back({Max, i});
    }

    /*
    vector < int > Aux;

    for(int i = K; i >= 1; --i)
        if(!Queries[i].empty())
        {
            Aux.push_back(T[i]);

            for(auto it : Queries[i])
            {
                int Val = it.first;
                int j = it.second;

                int counts = 0;

                for(auto x : Aux)
                    if(x >= Val)
                        ++counts;

                if(counts & 1)
                    swap(A[j].first, A[j].second);

                ans += 1LL * A[j].first;
            }
        }
    */

    cout << ans << '\n';

    return;
}

int main()
{
    Read();

    Precalculation();

    Solve();

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 8 ms 5120 KB Output is correct
2 Correct 7 ms 5120 KB Output is correct
3 Correct 8 ms 5120 KB Output is correct
4 Correct 8 ms 5120 KB Output is correct
5 Correct 8 ms 5120 KB Output is correct
6 Correct 8 ms 5120 KB Output is correct
7 Correct 9 ms 5120 KB Output is correct
8 Correct 8 ms 5168 KB Output is correct
9 Correct 8 ms 5120 KB Output is correct
10 Correct 8 ms 5120 KB Output is correct
11 Correct 10 ms 5120 KB Output is correct
12 Correct 11 ms 5120 KB Output is correct
13 Correct 12 ms 5120 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 5120 KB Output is correct
2 Correct 7 ms 5120 KB Output is correct
3 Correct 8 ms 5120 KB Output is correct
4 Correct 8 ms 5120 KB Output is correct
5 Correct 8 ms 5120 KB Output is correct
6 Correct 8 ms 5120 KB Output is correct
7 Correct 9 ms 5120 KB Output is correct
8 Correct 8 ms 5168 KB Output is correct
9 Correct 8 ms 5120 KB Output is correct
10 Correct 8 ms 5120 KB Output is correct
11 Correct 10 ms 5120 KB Output is correct
12 Correct 11 ms 5120 KB Output is correct
13 Correct 12 ms 5120 KB Output is correct
14 Correct 18 ms 5504 KB Output is correct
15 Correct 30 ms 5888 KB Output is correct
16 Correct 43 ms 6144 KB Output is correct
17 Correct 64 ms 6724 KB Output is correct
18 Correct 61 ms 6752 KB Output is correct
19 Correct 53 ms 6656 KB Output is correct
20 Correct 65 ms 6656 KB Output is correct
21 Correct 51 ms 6656 KB Output is correct
22 Correct 46 ms 6396 KB Output is correct
23 Correct 37 ms 6380 KB Output is correct
24 Correct 39 ms 6264 KB Output is correct
25 Correct 39 ms 6656 KB Output is correct
26 Correct 2248 ms 6684 KB Output is correct
27 Correct 2836 ms 6724 KB Output is correct
28 Correct 2025 ms 6728 KB Output is correct
29 Execution timed out 3083 ms 6656 KB Time limit exceeded
# Verdict Execution time Memory Grader output
1 Correct 8 ms 5120 KB Output is correct
2 Correct 7 ms 5120 KB Output is correct
3 Correct 8 ms 5120 KB Output is correct
4 Correct 8 ms 5120 KB Output is correct
5 Correct 8 ms 5120 KB Output is correct
6 Correct 8 ms 5120 KB Output is correct
7 Correct 9 ms 5120 KB Output is correct
8 Correct 8 ms 5168 KB Output is correct
9 Correct 8 ms 5120 KB Output is correct
10 Correct 8 ms 5120 KB Output is correct
11 Correct 10 ms 5120 KB Output is correct
12 Correct 11 ms 5120 KB Output is correct
13 Correct 12 ms 5120 KB Output is correct
14 Correct 18 ms 5504 KB Output is correct
15 Correct 30 ms 5888 KB Output is correct
16 Correct 43 ms 6144 KB Output is correct
17 Correct 64 ms 6724 KB Output is correct
18 Correct 61 ms 6752 KB Output is correct
19 Correct 53 ms 6656 KB Output is correct
20 Correct 65 ms 6656 KB Output is correct
21 Correct 51 ms 6656 KB Output is correct
22 Correct 46 ms 6396 KB Output is correct
23 Correct 37 ms 6380 KB Output is correct
24 Correct 39 ms 6264 KB Output is correct
25 Correct 39 ms 6656 KB Output is correct
26 Correct 2248 ms 6684 KB Output is correct
27 Correct 2836 ms 6724 KB Output is correct
28 Correct 2025 ms 6728 KB Output is correct
29 Execution timed out 3083 ms 6656 KB Time limit exceeded