Submission #218879

#TimeUsernameProblemLanguageResultExecution timeMemory
218879eggag32Zapina (COCI20_zapina)C++17
0 / 110
5 ms384 KiB
#pragma GCC optimize ("O3") #pragma GCC target ("sse4") #include <bits/stdc++.h> using namespace std; typedef long long ll; typedef long double ld; typedef vector<int> vi; typedef pair<int, int> pi; #define debug(x) cerr << #x << ": " << x << endl; #define debug2(x, y) debug(x) debug(y); #define repn(i, a, b) for(int i = (int)(a); i < (int)(b); i++) #define rep(i, a) for(int i = 0; i < (int)(a); i++) #define all(v) v.begin(), v.end() #define mp make_pair #define pb push_back #define lb lower_bound #define ub upper_bound #define fi first #define se second #define sq(x) ((x) * (x)) const int MOD = 1e9 + 7; template<class T> T gcd(T a, T b){ return ((b == 0) ? a : gcd(b, a % b)); } ll dp[355][355][2]; //[index][tot][already have one happy] ll fact[355]; ll invFact[355]; ll C(ll n, ll r){ if(r > n) return 0; ll ret = fact[n]; ret = ((ret * invFact[n - r]) + MOD) % MOD; ret = ((ret * invFact[r]) + MOD) % MOD; return ret; } ll mypow(ll a, ll p){ if(p == 0) return 1; if(p == 1) return (a % MOD); if(p & 1) return ((a % MOD) * (mypow(a, p - 1) % MOD)) % MOD; ll x = mypow(a, p / 2) % MOD; return (x * x) % MOD; } ll inv(ll base){ return mypow(base, MOD - 2); } int main(){ ios_base::sync_with_stdio(false); cin.tie(0); //freopen("input.in", "r", stdin); //freopen("output.out", "w", stdout); int n; cin >> n; rep(i, n + 2) rep(j, n + 2) rep(k, 2) dp[i][j][k] = 0; fact[0] = 1; invFact[0] = 1; for(ll i = 1; i < 355; i++){ fact[i] = (1LL * fact[i - 1] * i) % MOD; invFact[i] = inv(fact[i]); } dp[1][1][1] = n; repn(i, 0, n + 1) if(i != 1) dp[1][i][0] = C(n, i); repn(i, 2, n + 1){ repn(j, 0, n + 1){ //the prev total repn(k, 0, n + 1) if((j + k) <= n){ //current choice if(k == i){ dp[i][j + k][1] = (((dp[i][j + k][1] + dp[i - 1][j][1] + dp[i - 1][j][0]) % MOD) * C(n - j, k)) % MOD; dp[i][j + k][0] = (((dp[i][j + k][0] + dp[i - 1][j][0]) % MOD) * C(n - j, k)) % MOD; } else{ dp[i][j + k][1] = (((dp[i][j + k][1] + dp[i - 1][j][1]) % MOD) * C(n - j, k)) % MOD; dp[i][j + k][0] = (((dp[i][j + k][0] + dp[i - 1][j][0]) % MOD) * C(n - j, k)) % MOD; } } } } cout << dp[n][n][1] % MOD << endl; return 0; } /* Things to look out for: - Integer overflows - Array bounds - Special cases Be careful! */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...