/*input
6 4
5 1 8 9
1 2 4 8
2 10 5 10
9 2 10 4
1 1 10 1
5 3 5 10
*/
#include <iostream>
#include <vector>
#include <algorithm>
#include <cassert>
#include <map>
#include <functional>
using namespace std;
const int INF = 1e9 + 8;
void minimize(int &x, int y) { x = (x < y ? x : y); }
void maximize(int &x, int y) { x = (x > y ? x : y); }
struct Rect { int x1, x2, y1, y2; };
vector<pair<int, int>> skewers;
bool contain(Rect r, int x, int y)
{
return (x >= r.x1 && r.x2 >= x && y >= r.y1 && r.y2 >= y);
}
vector<Rect> cut(vector<Rect> rects, int x, int y)
{
vector<Rect> leftover;
for (auto r : rects) {
if (!contain(r, x, y)) {
leftover.push_back(r);
}
}
return leftover;
}
bool solve(vector<Rect> rects, int K)
{
if (rects.empty()) return true;
if (K == 0) return false;
int lim_x1 = INF, lim_x2 = 0, lim_y1 = INF, lim_y2 = 0;
for (auto &r : rects) {
minimize(lim_x1, r.x2);
maximize(lim_x2, r.x1);
minimize(lim_y1, r.y2);
maximize(lim_y2, r.y1);
}
skewers.emplace_back(lim_x1, lim_y1);
if (solve(cut(rects, lim_x1, lim_y1), K - 1)) return true;
skewers.pop_back();
skewers.emplace_back(lim_x2, lim_y1);
if (solve(cut(rects, lim_x2, lim_y1), K - 1)) return true;
skewers.pop_back();
skewers.emplace_back(lim_x1, lim_y2);
if (solve(cut(rects, lim_x1, lim_y2), K - 1)) return true;
skewers.pop_back();
skewers.emplace_back(lim_x2, lim_y2);
if (solve(cut(rects, lim_x2, lim_y2), K - 1)) return true;
skewers.pop_back();
if (K != 4) return false;
assert(lim_x1 < lim_x2);
assert(lim_y1 < lim_y2);
// solve 4-sides
map<string, vector<pair<int, int>>> intervals;
int l_x1 = 0, l_x2 = 0, l_y1 = 0, l_y2 = 0;
int r_x1 = INF, r_x2 = INF, r_y1 = INF, r_y2 = INF;
for (auto &r : rects) {
maximize(r.x1, lim_x1);
minimize(r.x2, lim_x2);
maximize(r.y1, lim_y1);
minimize(r.y2, lim_y2);
string sides = "";
if (r.x1 == lim_x1) sides += 'L';
if (r.x2 == lim_x2) sides += 'R';
if (r.y1 == lim_y1) sides += 'D';
if (r.y2 == lim_y2) sides += 'U';
assert(!sides.empty());
if ((int) sides.size() > 2) continue;
if (sides == "LR") intervals[sides].emplace_back(r.y1, r.y2);
else if (sides == "DU") intervals[sides].emplace_back(r.x1, r.x2);
else if (sides == "L") maximize(l_x1, r.y1), minimize(r_x1, r.y2);
else if (sides == "R") maximize(l_x2, r.y1), minimize(r_x2, r.y2);
else if (sides == "D") maximize(l_y1, r.x1), minimize(r_y1, r.x2);
else if (sides == "U") maximize(l_y2, r.x1), minimize(r_y2, r.x2);
else if (sides == "LD") intervals[sides].emplace_back(r.x2, r.y2);
else if (sides == "RD") intervals[sides].emplace_back(r.x1, r.y2);
else if (sides == "LU") intervals[sides].emplace_back(r.x2, r.y1);
else if (sides == "RU") intervals[sides].emplace_back(r.x1, r.y1);
else assert(false);
}
assert(l_x1 <= r_x1), assert(l_x2 <= r_x2);
assert(l_y1 <= r_y1), assert(l_y2 <= r_y2);
// identify important points
vector<int> pnts_l, pnts_d, pnts_u, pnts_r;
pnts_l.push_back(l_x1), pnts_l.push_back(r_x1);
pnts_r.push_back(l_x2), pnts_r.push_back(r_x2);
pnts_d.push_back(l_y1), pnts_d.push_back(r_y1);
pnts_u.push_back(l_y2), pnts_u.push_back(r_y2);
for (auto p : intervals["LD"]) pnts_l.push_back(p.second), pnts_d.push_back(p.first);
for (auto p : intervals["RD"]) pnts_r.push_back(p.second), pnts_d.push_back(p.first);
for (auto p : intervals["LU"]) pnts_l.push_back(p.second), pnts_u.push_back(p.first);
for (auto p : intervals["RU"]) pnts_r.push_back(p.second), pnts_u.push_back(p.first);
for (auto p : intervals["LR"]) pnts_l.push_back(p.first), pnts_r.push_back(p.first), pnts_l.push_back(p.second), pnts_r.push_back(p.second);
for (auto p : intervals["DU"]) pnts_d.push_back(p.first), pnts_u.push_back(p.first), pnts_d.push_back(p.second), pnts_u.push_back(p.second);
sort(pnts_l.begin(), pnts_l.end());
sort(pnts_r.begin(), pnts_r.end());
sort(pnts_d.begin(), pnts_d.end());
sort(pnts_u.begin(), pnts_u.end());
pnts_l.erase(unique(pnts_l.begin(), pnts_l.end()), pnts_l.end());
pnts_r.erase(unique(pnts_r.begin(), pnts_r.end()), pnts_r.end());
pnts_d.erase(unique(pnts_d.begin(), pnts_d.end()), pnts_d.end());
pnts_u.erase(unique(pnts_u.begin(), pnts_u.end()), pnts_u.end());
auto get_pos = [&](vector<int> &vec, int x) -> int { return int(lower_bound(vec.begin(), vec.end(), x) - vec.begin()); };
// identify range (corner)
vector<int> range_dl(pnts_d.size(), pnts_l.back()), range_dr(pnts_d.size(), pnts_r.back());
vector<int> range_lu(pnts_l.size(), pnts_u.back()), range_ru(pnts_r.size(), pnts_u.front());
for (auto p : intervals["LD"]) minimize(range_dl[get_pos(pnts_d, p.first)], p.second);
for (auto p : intervals["RD"]) minimize(range_dr[get_pos(pnts_d, p.first)], p.second);
for (auto p : intervals["LU"]) minimize(range_lu[get_pos(pnts_l, p.second)], p.first);
for (auto p : intervals["RU"]) maximize(range_ru[get_pos(pnts_r, p.second)], p.first);
for (int i = 1; i < (int) pnts_d.size(); ++i) minimize(range_dl[i], range_dl[i - 1]);
for (int i = (int) pnts_d.size() - 2; i >= 0; --i) minimize(range_dr[i], range_dr[i + 1]);
for (int i = (int) pnts_l.size() - 2; i >= 0; --i) minimize(range_lu[i], range_lu[i + 1]);
for (int i = (int) pnts_r.size() - 2; i >= 0; --i) maximize(range_ru[i], range_ru[i + 1]);
// identify range (edges)
for (string sides : {"LR", "DU"}) {
vector<pair<int, int>> &vec = intervals[sides];
sort(vec.begin(), vec.end());
vector<pair<int, int>> tmp;
tmp.swap(vec);
for (auto &p : tmp) {
while (!vec.empty() && vec.back().second >= p.second) vec.pop_back();
if (vec.empty() || vec.back().first < p.first) vec.push_back(p);
}
// for (auto p : vec) cout << sides << ": " << p.first << ' ' << p.second << endl;
}
// check skewer locations
// auto comp_by_second = [&](pair<int, int> &lhs, pair<int, int> &rhs) -> bool {
// return (lhs.second == rhs.second ? lhs.first < rhs.first : lhs.second < rhs.second);
// };
auto check_du = [&](int x_d, int y_l, int y_r) -> bool {
if (y_l < l_x1) return false;
if (y_r < l_x2) return false;
int id_l = get_pos(pnts_l, y_l), id_r = get_pos(pnts_r, y_r);
int x1_u = (id_r + 1 != (int) pnts_r.size() ? range_ru[id_r + 1] : pnts_u.front());
int x2_u = (id_l + 1 != (int) pnts_l.size() ? range_lu[id_l + 1] : pnts_u.back());
// cout << x1_u << ' ' << x2_u << endl;
maximize(x1_u, l_y2), minimize(x2_u, r_y2);
// cout << x1_u << ' ' << x2_u << endl;
if (x1_u > x2_u) return false;
if (intervals["DU"].empty()) return true;
if (x_d <= intervals["DU"].front().second && x_d >= intervals["DU"].back().first) return true;
if (x_d <= intervals["DU"].front().second) {
int lim1_u = max(x1_u, intervals["DU"].back().first);
int lim2_u = min(x2_u, intervals["DU"].back().second);
if (lim1_u <= lim2_u) {
auto it = upper_bound(intervals["DU"].begin(), intervals["DU"].end(), make_pair(x_d, INF));
if (it == intervals["DU"].end() || lim1_u <= it->second) return true;
}
}
if (x_d >= intervals["DU"].back().first) {
int lim1_u = max(x1_u, intervals["DU"].front().first);
int lim2_u = min(x2_u, intervals["DU"].front().second);
if (lim1_u <= lim2_u) {
auto it = upper_bound(intervals["DU"].begin(), intervals["DU"].end(), make_pair(lim2_u, INF));
if (it == intervals["DU"].end() || x_d <= it->second) return true;
}
}
return false;
};
for (int x_d : pnts_d) if (l_y1 <= x_d && r_y1 >= x_d) {
int id = get_pos(pnts_d, x_d);
int y_l = (id ? range_dl[id - 1] : pnts_l.back());
int y_r = (id + 1 != (int) pnts_d.size() ? range_dr[id + 1] : pnts_r.back());
minimize(y_l, r_x1), minimize(y_r, r_x2);
// empty
if (intervals["LR"].empty()) {
if (check_du(x_d, y_l, y_r)) {
skewers.emplace_back(x_d, lim_y1);
return solve(cut(rects, x_d, lim_y1), K - 1);
}
continue;
}
// prefix-suffix
{
bool valid = true;
int lim_l = min(y_l, intervals["LR"].front().second), lim_r = y_r;
auto it = upper_bound(intervals["LR"].begin(), intervals["LR"].end(), make_pair(lim_l, INF));
if (it != intervals["LR"].end()) {
minimize(lim_r, it->second);
if (lim_r < intervals["LR"].back().first) valid = false;
}
// if (valid) cout << "pref-suff: " << x_d << ": " << lim_l << ' ' << lim_r << endl;
if (valid && check_du(x_d, lim_l, lim_r)) {
skewers.emplace_back(x_d, lim_y1);
return solve(cut(rects, x_d, lim_y1), K - 1);
}
}
// suffix-prefix
{
bool valid = true;
int lim_l = y_l, lim_r = min(y_r, intervals["LR"][0].second);
auto it = upper_bound(intervals["LR"].begin(), intervals["LR"].end(), make_pair(lim_r, INF));
if (it != intervals["LR"].end()) {
minimize(lim_l, it->second);
if (lim_l < intervals["LR"].back().first) valid = false;
}
// if (valid) cout << "suff-pref: " << x_d << ": " << lim_l << ' ' << lim_r << endl;
if (valid && check_du(x_d, lim_l, lim_r)) {
skewers.emplace_back(x_d, lim_y1);
return solve(cut(rects, x_d, lim_y1), K - 1);
}
}
}
assert(false);
return false;
}
int main()
{
ios_base::sync_with_stdio(0); cin.tie(0);
int N, K;
cin >> N >> K;
vector<Rect> rects(N);
for (auto &r : rects) cin >> r.x1 >> r.y1 >> r.x2 >> r.y2;
assert(solve(rects, K));
while ((int) skewers.size() < K) skewers.push_back(skewers.back());
for (auto &p : skewers) cout << p.first << ' ' << p.second << '\n';
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
384 KB |
Output is correct |
2 |
Correct |
1 ms |
384 KB |
Output is correct |
3 |
Correct |
1 ms |
384 KB |
Output is correct |
4 |
Correct |
1 ms |
384 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
512 KB |
Output is correct |
2 |
Correct |
2 ms |
512 KB |
Output is correct |
3 |
Correct |
2 ms |
512 KB |
Output is correct |
4 |
Correct |
2 ms |
512 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
512 KB |
Output is correct |
2 |
Correct |
2 ms |
512 KB |
Output is correct |
3 |
Correct |
2 ms |
512 KB |
Output is correct |
4 |
Correct |
2 ms |
384 KB |
Output is correct |
5 |
Correct |
2 ms |
384 KB |
Output is correct |
6 |
Correct |
1 ms |
384 KB |
Output is correct |
7 |
Correct |
1 ms |
512 KB |
Output is correct |
8 |
Correct |
2 ms |
512 KB |
Output is correct |
9 |
Correct |
4 ms |
640 KB |
Output is correct |
10 |
Correct |
2 ms |
628 KB |
Output is correct |
11 |
Correct |
3 ms |
640 KB |
Output is correct |
12 |
Correct |
2 ms |
640 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
512 KB |
Output is correct |
2 |
Correct |
2 ms |
512 KB |
Output is correct |
3 |
Correct |
2 ms |
512 KB |
Output is correct |
4 |
Correct |
2 ms |
512 KB |
Output is correct |
5 |
Correct |
2 ms |
488 KB |
Output is correct |
6 |
Correct |
1 ms |
512 KB |
Output is correct |
7 |
Correct |
2 ms |
512 KB |
Output is correct |
8 |
Correct |
2 ms |
512 KB |
Output is correct |
9 |
Correct |
2 ms |
512 KB |
Output is correct |
10 |
Correct |
2 ms |
512 KB |
Output is correct |
11 |
Correct |
2 ms |
512 KB |
Output is correct |
12 |
Correct |
2 ms |
512 KB |
Output is correct |
13 |
Correct |
4 ms |
640 KB |
Output is correct |
14 |
Correct |
5 ms |
640 KB |
Output is correct |
15 |
Correct |
4 ms |
668 KB |
Output is correct |
16 |
Correct |
3 ms |
640 KB |
Output is correct |
17 |
Correct |
5 ms |
640 KB |
Output is correct |
18 |
Correct |
3 ms |
640 KB |
Output is correct |
19 |
Correct |
5 ms |
680 KB |
Output is correct |
20 |
Correct |
6 ms |
716 KB |
Output is correct |
21 |
Correct |
6 ms |
712 KB |
Output is correct |
22 |
Correct |
4 ms |
640 KB |
Output is correct |
23 |
Correct |
6 ms |
692 KB |
Output is correct |
24 |
Correct |
4 ms |
680 KB |
Output is correct |
25 |
Correct |
4 ms |
640 KB |
Output is correct |
26 |
Correct |
4 ms |
716 KB |
Output is correct |
27 |
Correct |
4 ms |
644 KB |
Output is correct |
28 |
Correct |
3 ms |
512 KB |
Output is correct |
29 |
Correct |
3 ms |
640 KB |
Output is correct |
30 |
Correct |
3 ms |
640 KB |
Output is correct |
31 |
Correct |
5 ms |
700 KB |
Output is correct |
32 |
Correct |
4 ms |
680 KB |
Output is correct |
33 |
Correct |
6 ms |
640 KB |
Output is correct |
34 |
Correct |
6 ms |
640 KB |
Output is correct |
35 |
Correct |
8 ms |
712 KB |
Output is correct |
36 |
Correct |
5 ms |
644 KB |
Output is correct |
37 |
Correct |
8 ms |
728 KB |
Output is correct |
38 |
Correct |
8 ms |
712 KB |
Output is correct |
39 |
Correct |
5 ms |
664 KB |
Output is correct |
40 |
Correct |
5 ms |
644 KB |
Output is correct |
41 |
Correct |
5 ms |
688 KB |
Output is correct |
42 |
Correct |
6 ms |
660 KB |
Output is correct |
43 |
Correct |
7 ms |
680 KB |
Output is correct |
44 |
Correct |
6 ms |
712 KB |
Output is correct |
45 |
Correct |
4 ms |
704 KB |
Output is correct |
46 |
Correct |
6 ms |
688 KB |
Output is correct |
47 |
Correct |
7 ms |
676 KB |
Output is correct |
48 |
Correct |
8 ms |
696 KB |
Output is correct |
49 |
Correct |
7 ms |
708 KB |
Output is correct |
50 |
Correct |
5 ms |
684 KB |
Output is correct |
51 |
Correct |
8 ms |
720 KB |
Output is correct |
52 |
Correct |
5 ms |
644 KB |
Output is correct |
53 |
Correct |
7 ms |
708 KB |
Output is correct |
54 |
Correct |
8 ms |
704 KB |
Output is correct |
55 |
Correct |
4 ms |
640 KB |
Output is correct |
56 |
Correct |
4 ms |
628 KB |
Output is correct |
57 |
Correct |
5 ms |
512 KB |
Output is correct |
58 |
Correct |
4 ms |
512 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
384 KB |
Output is correct |
2 |
Correct |
1 ms |
384 KB |
Output is correct |
3 |
Correct |
1 ms |
384 KB |
Output is correct |
4 |
Correct |
1 ms |
384 KB |
Output is correct |
5 |
Correct |
95 ms |
9668 KB |
Output is correct |
6 |
Correct |
108 ms |
9672 KB |
Output is correct |
7 |
Correct |
99 ms |
9720 KB |
Output is correct |
8 |
Correct |
115 ms |
9804 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
512 KB |
Output is correct |
2 |
Correct |
2 ms |
512 KB |
Output is correct |
3 |
Correct |
2 ms |
512 KB |
Output is correct |
4 |
Correct |
2 ms |
512 KB |
Output is correct |
5 |
Correct |
101 ms |
12268 KB |
Output is correct |
6 |
Correct |
110 ms |
11688 KB |
Output is correct |
7 |
Correct |
101 ms |
12220 KB |
Output is correct |
8 |
Correct |
120 ms |
20792 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
512 KB |
Output is correct |
2 |
Correct |
2 ms |
512 KB |
Output is correct |
3 |
Correct |
2 ms |
512 KB |
Output is correct |
4 |
Correct |
2 ms |
384 KB |
Output is correct |
5 |
Correct |
2 ms |
384 KB |
Output is correct |
6 |
Correct |
1 ms |
384 KB |
Output is correct |
7 |
Correct |
1 ms |
512 KB |
Output is correct |
8 |
Correct |
2 ms |
512 KB |
Output is correct |
9 |
Correct |
4 ms |
640 KB |
Output is correct |
10 |
Correct |
2 ms |
628 KB |
Output is correct |
11 |
Correct |
3 ms |
640 KB |
Output is correct |
12 |
Correct |
2 ms |
640 KB |
Output is correct |
13 |
Correct |
115 ms |
13244 KB |
Output is correct |
14 |
Correct |
134 ms |
13376 KB |
Output is correct |
15 |
Correct |
101 ms |
12016 KB |
Output is correct |
16 |
Correct |
120 ms |
12144 KB |
Output is correct |
17 |
Correct |
111 ms |
14700 KB |
Output is correct |
18 |
Correct |
107 ms |
12096 KB |
Output is correct |
19 |
Correct |
110 ms |
14956 KB |
Output is correct |
20 |
Correct |
124 ms |
18624 KB |
Output is correct |
21 |
Correct |
319 ms |
29280 KB |
Output is correct |
22 |
Correct |
144 ms |
17596 KB |
Output is correct |
23 |
Correct |
196 ms |
25064 KB |
Output is correct |
24 |
Correct |
220 ms |
27496 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
512 KB |
Output is correct |
2 |
Correct |
2 ms |
512 KB |
Output is correct |
3 |
Correct |
2 ms |
512 KB |
Output is correct |
4 |
Correct |
2 ms |
512 KB |
Output is correct |
5 |
Correct |
2 ms |
488 KB |
Output is correct |
6 |
Correct |
1 ms |
512 KB |
Output is correct |
7 |
Correct |
2 ms |
512 KB |
Output is correct |
8 |
Correct |
2 ms |
512 KB |
Output is correct |
9 |
Correct |
2 ms |
512 KB |
Output is correct |
10 |
Correct |
2 ms |
512 KB |
Output is correct |
11 |
Correct |
2 ms |
512 KB |
Output is correct |
12 |
Correct |
2 ms |
512 KB |
Output is correct |
13 |
Correct |
4 ms |
640 KB |
Output is correct |
14 |
Correct |
5 ms |
640 KB |
Output is correct |
15 |
Correct |
4 ms |
668 KB |
Output is correct |
16 |
Correct |
3 ms |
640 KB |
Output is correct |
17 |
Correct |
5 ms |
640 KB |
Output is correct |
18 |
Correct |
3 ms |
640 KB |
Output is correct |
19 |
Correct |
5 ms |
680 KB |
Output is correct |
20 |
Correct |
6 ms |
716 KB |
Output is correct |
21 |
Correct |
6 ms |
712 KB |
Output is correct |
22 |
Correct |
4 ms |
640 KB |
Output is correct |
23 |
Correct |
6 ms |
692 KB |
Output is correct |
24 |
Correct |
4 ms |
680 KB |
Output is correct |
25 |
Correct |
4 ms |
640 KB |
Output is correct |
26 |
Correct |
4 ms |
716 KB |
Output is correct |
27 |
Correct |
4 ms |
644 KB |
Output is correct |
28 |
Correct |
3 ms |
512 KB |
Output is correct |
29 |
Correct |
3 ms |
640 KB |
Output is correct |
30 |
Correct |
3 ms |
640 KB |
Output is correct |
31 |
Correct |
5 ms |
700 KB |
Output is correct |
32 |
Correct |
4 ms |
680 KB |
Output is correct |
33 |
Correct |
6 ms |
640 KB |
Output is correct |
34 |
Correct |
6 ms |
640 KB |
Output is correct |
35 |
Correct |
8 ms |
712 KB |
Output is correct |
36 |
Correct |
5 ms |
644 KB |
Output is correct |
37 |
Correct |
8 ms |
728 KB |
Output is correct |
38 |
Correct |
8 ms |
712 KB |
Output is correct |
39 |
Correct |
5 ms |
664 KB |
Output is correct |
40 |
Correct |
5 ms |
644 KB |
Output is correct |
41 |
Correct |
5 ms |
688 KB |
Output is correct |
42 |
Correct |
6 ms |
660 KB |
Output is correct |
43 |
Correct |
7 ms |
680 KB |
Output is correct |
44 |
Correct |
6 ms |
712 KB |
Output is correct |
45 |
Correct |
4 ms |
704 KB |
Output is correct |
46 |
Correct |
6 ms |
688 KB |
Output is correct |
47 |
Correct |
7 ms |
676 KB |
Output is correct |
48 |
Correct |
8 ms |
696 KB |
Output is correct |
49 |
Correct |
7 ms |
708 KB |
Output is correct |
50 |
Correct |
5 ms |
684 KB |
Output is correct |
51 |
Correct |
8 ms |
720 KB |
Output is correct |
52 |
Correct |
5 ms |
644 KB |
Output is correct |
53 |
Correct |
7 ms |
708 KB |
Output is correct |
54 |
Correct |
8 ms |
704 KB |
Output is correct |
55 |
Correct |
4 ms |
640 KB |
Output is correct |
56 |
Correct |
4 ms |
628 KB |
Output is correct |
57 |
Correct |
5 ms |
512 KB |
Output is correct |
58 |
Correct |
4 ms |
512 KB |
Output is correct |
59 |
Correct |
133 ms |
16952 KB |
Output is correct |
60 |
Correct |
101 ms |
14444 KB |
Output is correct |
61 |
Correct |
168 ms |
14956 KB |
Output is correct |
62 |
Correct |
99 ms |
13804 KB |
Output is correct |
63 |
Correct |
102 ms |
15464 KB |
Output is correct |
64 |
Correct |
101 ms |
12784 KB |
Output is correct |
65 |
Correct |
111 ms |
15980 KB |
Output is correct |
66 |
Correct |
106 ms |
15424 KB |
Output is correct |
67 |
Correct |
234 ms |
26276 KB |
Output is correct |
68 |
Correct |
152 ms |
19820 KB |
Output is correct |
69 |
Correct |
155 ms |
22644 KB |
Output is correct |
70 |
Correct |
166 ms |
25140 KB |
Output is correct |
71 |
Correct |
833 ms |
35484 KB |
Output is correct |
72 |
Correct |
830 ms |
35428 KB |
Output is correct |
73 |
Correct |
668 ms |
33792 KB |
Output is correct |
74 |
Correct |
298 ms |
30920 KB |
Output is correct |
75 |
Correct |
474 ms |
31768 KB |
Output is correct |
76 |
Correct |
312 ms |
29284 KB |
Output is correct |
77 |
Correct |
598 ms |
32512 KB |
Output is correct |
78 |
Correct |
1094 ms |
34044 KB |
Output is correct |
79 |
Correct |
565 ms |
32244 KB |
Output is correct |
80 |
Correct |
371 ms |
32888 KB |
Output is correct |
81 |
Correct |
845 ms |
31916 KB |
Output is correct |
82 |
Correct |
277 ms |
25508 KB |
Output is correct |
83 |
Correct |
452 ms |
32360 KB |
Output is correct |
84 |
Correct |
386 ms |
25828 KB |
Output is correct |
85 |
Correct |
770 ms |
35312 KB |
Output is correct |
86 |
Correct |
268 ms |
29152 KB |
Output is correct |
87 |
Correct |
715 ms |
35600 KB |
Output is correct |
88 |
Correct |
390 ms |
34700 KB |
Output is correct |
89 |
Correct |
606 ms |
30824 KB |
Output is correct |
90 |
Correct |
976 ms |
34976 KB |
Output is correct |
91 |
Correct |
568 ms |
30056 KB |
Output is correct |
92 |
Correct |
1044 ms |
35588 KB |
Output is correct |
93 |
Correct |
829 ms |
34636 KB |
Output is correct |
94 |
Correct |
947 ms |
34748 KB |
Output is correct |
95 |
Correct |
964 ms |
34992 KB |
Output is correct |
96 |
Correct |
743 ms |
34296 KB |
Output is correct |
97 |
Correct |
835 ms |
34992 KB |
Output is correct |
98 |
Correct |
734 ms |
33040 KB |
Output is correct |
99 |
Correct |
624 ms |
33212 KB |
Output is correct |
100 |
Correct |
922 ms |
35084 KB |
Output is correct |
101 |
Correct |
910 ms |
34668 KB |
Output is correct |
102 |
Correct |
503 ms |
25424 KB |
Output is correct |
103 |
Correct |
1095 ms |
35360 KB |
Output is correct |
104 |
Correct |
571 ms |
30236 KB |
Output is correct |
105 |
Correct |
1052 ms |
35868 KB |
Output is correct |
106 |
Correct |
938 ms |
34196 KB |
Output is correct |
107 |
Correct |
794 ms |
34740 KB |
Output is correct |
108 |
Correct |
1049 ms |
34060 KB |
Output is correct |
109 |
Correct |
1070 ms |
35212 KB |
Output is correct |
110 |
Correct |
870 ms |
35620 KB |
Output is correct |
111 |
Correct |
752 ms |
32416 KB |
Output is correct |
112 |
Correct |
1027 ms |
35140 KB |
Output is correct |
113 |
Correct |
459 ms |
23836 KB |
Output is correct |
114 |
Correct |
449 ms |
23864 KB |
Output is correct |
115 |
Correct |
462 ms |
23836 KB |
Output is correct |
116 |
Correct |
436 ms |
23840 KB |
Output is correct |
117 |
Correct |
619 ms |
31688 KB |
Output is correct |
118 |
Correct |
636 ms |
31724 KB |
Output is correct |
119 |
Correct |
612 ms |
31712 KB |
Output is correct |
120 |
Correct |
614 ms |
31876 KB |
Output is correct |
121 |
Correct |
647 ms |
31680 KB |
Output is correct |
122 |
Correct |
664 ms |
31852 KB |
Output is correct |
123 |
Correct |
626 ms |
31776 KB |
Output is correct |
124 |
Correct |
636 ms |
31692 KB |
Output is correct |
125 |
Correct |
626 ms |
31676 KB |
Output is correct |
126 |
Correct |
636 ms |
31752 KB |
Output is correct |