Submission #216977

# Submission time Handle Problem Language Result Execution time Memory
216977 2020-03-28T15:26:38 Z IOrtroiii Harvest (JOI20_harvest) C++14
5 / 100
294 ms 54628 KB
/*
5 3 20 6
0 4 8 12 16
2 11 14
9
4 1932
2 93787
1 89
5 98124798
1 2684
1 137598
3 2
3 8375
4 237
*/
#include <bits/stdc++.h>

#include <ext/pb_ds/tree_policy.hpp>

#include <ext/pb_ds/assoc_container.hpp>

using namespace std;

using namespace __gnu_pbds;

using ll = int64_t;
using ull = uint64_t;
template<class T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());

#define int ll

int32_t main() {
   ios_base::sync_with_stdio(false);
   int N, M; ll L, C;
   cin >> N >> M >> L >> C;
   vector<ll> A(N);
   for (int i = 0; i < N; ++i) cin >> A[i], A[i] = L - 1 - A[i]; // for convenience
   reverse(A.begin(), A.end());
   vector<int> nxt(N);
   vector<ll> dist(N);
   {
      for (int v = 0; v < N; ++v) {
         ll newA = (A[v] + C) % L;
         int z = lower_bound(A.begin(), A.end(), newA) - A.begin();
         if (z == N) {
            nxt[v] = 0;
            dist[v] = C + L + A[0] - newA;
         } else {
            nxt[v] = z;
            dist[v] = C + A[z] - newA;
         }
      }
   }

   vector<vector<ll>> adds(N);
   while (M--) {
      ll B;
      cin >> B;
      B = L - 1 - B;
      int z = lower_bound(A.begin(), A.end(), B) - A.begin();
      if (z == N) {
         adds[0].emplace_back(L + A[0] - B);
      } else {
         adds[z].emplace_back(A[z] - B);
      }
   }

   int Q;
   cin >> Q;
   vector<vector<pair<ll, int>>> qs(N);
   vector<ll> ans(Q);
   for (int i = 0; i < Q; ++i) {
      int v; ll T;
      cin >> v >> T;
      v = N - v;
      qs[v].emplace_back(T, i);
   }
   vector<bool> isRoot(N);
   vector<int> visited(N, 0);
   for (int i = 0; i < N; ++i) {
      int v = i;
      while (visited[v] == 0) {
         visited[v] = 1;
         v = nxt[v];
      }
      if (visited[v] == 1) isRoot[v] = true;
      v = i;
      while (visited[v] == 1) {
         visited[v] = 2;
         v = nxt[v];
      }
   }
   vector<vector<int>> adj(N);
   for (int v = 0; v < N; ++v) {
      if (!isRoot[v]) {
         adj[nxt[v]].emplace_back(v);
      }
   }
   vector<ll> distToRoot(N);
   vector<ordered_set<pair<ll, ull>>> vals(N);
   for (int i = 0; i < N; ++i) {
      if (!isRoot[i]) continue;
      function<void(int)> dfs1 = [&](int v) {
         for (int u : adj[v]) {
            distToRoot[u] = distToRoot[v] + dist[u];
            dfs1(u);
         }
      };
      dfs1(i);
      function<void(int)> dfs2 = [&](int v) {
         for (auto z : adds[v]) {
            vals[v].insert({distToRoot[v] + z, rng()});
         }
         for (int u : adj[v]) {
            dfs2(u);
            if (int(vals[v].size()) < int(vals[u].size())) {
               vals[v].swap(vals[u]);
            }
            for (auto z : vals[u]) {
               vals[v].insert(z);
            }
            vals[u] = {};
         }
         for (auto q : qs[v]) {
            ans[q.second] += vals[v].order_of_key({q.first + distToRoot[v], -1});
         }
      };
      dfs2(i);
      vector<pair<ll, int>> cur_qs;
      ll cycleLen = distToRoot[nxt[i]] + dist[i];
      int v = i;
      while (true) {
         for (auto q : qs[v]) {
            cur_qs.emplace_back(q.first - (cycleLen - distToRoot[v]), q.second); // must pass through removed edge
         }
         v = nxt[v];
         if (v == i) break;
      }
      for (auto z : vals[i]) cur_qs.emplace_back(z.first, -1);
      sort(cur_qs.begin(), cur_qs.end());
      ordered_set<pair<ll, ull>> st;
      ll subt = 0;
      for (auto q : cur_qs) {
         if (q.second == -1) {
            st.insert({q.first, rng()});
            subt += (q.first / cycleLen);
         } else {
            ans[q.second] += (ll(q.first / cycleLen) * ll(st.size()) + st.order_of_key({q.first % cycleLen, -1}) - subt);
         }
      }
   }
   for (int i = 0; i < Q; ++i) cout << ans[i] << "\n";
   return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 640 KB Output is correct
2 Correct 9 ms 1280 KB Output is correct
3 Correct 10 ms 1536 KB Output is correct
4 Correct 11 ms 1664 KB Output is correct
5 Correct 10 ms 2304 KB Output is correct
6 Correct 10 ms 2304 KB Output is correct
7 Correct 10 ms 2304 KB Output is correct
8 Correct 10 ms 1540 KB Output is correct
9 Correct 10 ms 1536 KB Output is correct
10 Correct 10 ms 1536 KB Output is correct
11 Correct 10 ms 1536 KB Output is correct
12 Correct 12 ms 2304 KB Output is correct
13 Correct 17 ms 2336 KB Output is correct
14 Correct 11 ms 1892 KB Output is correct
15 Correct 10 ms 1920 KB Output is correct
16 Correct 11 ms 1920 KB Output is correct
17 Correct 11 ms 2016 KB Output is correct
18 Correct 10 ms 1964 KB Output is correct
19 Correct 10 ms 1920 KB Output is correct
20 Correct 10 ms 1920 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 174 ms 11396 KB Output is correct
2 Incorrect 294 ms 54628 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 640 KB Output is correct
2 Correct 9 ms 1280 KB Output is correct
3 Correct 10 ms 1536 KB Output is correct
4 Correct 11 ms 1664 KB Output is correct
5 Correct 10 ms 2304 KB Output is correct
6 Correct 10 ms 2304 KB Output is correct
7 Correct 10 ms 2304 KB Output is correct
8 Correct 10 ms 1540 KB Output is correct
9 Correct 10 ms 1536 KB Output is correct
10 Correct 10 ms 1536 KB Output is correct
11 Correct 10 ms 1536 KB Output is correct
12 Correct 12 ms 2304 KB Output is correct
13 Correct 17 ms 2336 KB Output is correct
14 Correct 11 ms 1892 KB Output is correct
15 Correct 10 ms 1920 KB Output is correct
16 Correct 11 ms 1920 KB Output is correct
17 Correct 11 ms 2016 KB Output is correct
18 Correct 10 ms 1964 KB Output is correct
19 Correct 10 ms 1920 KB Output is correct
20 Correct 10 ms 1920 KB Output is correct
21 Correct 174 ms 11396 KB Output is correct
22 Incorrect 294 ms 54628 KB Output isn't correct
23 Halted 0 ms 0 KB -