Submission #216905

# Submission time Handle Problem Language Result Execution time Memory
216905 2020-03-28T11:15:42 Z Toadologist Harvest (JOI20_harvest) C++11
100 / 100
2394 ms 272572 KB
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
#ifdef DEBUG
#define display(x) cerr << #x << " = " << (x) << endl;
#define displaya(a, st, n)\
	{cerr << #a << " = {";\
	for(int qwq = (st); qwq <= (n); ++qwq) {\
		if(qwq == (st)) cerr << ((a)[qwq]);\
		else cerr << ", " << ((a)[qwq]);\
	} cerr << "}" << endl;}
#define displayv(v) displaya(v, 0, (int)(v).size() - 1)
#define eprintf(...) fprintf(stderr, __VA_ARGS__)
#else
#define display(x) ;
#define displaya(a, st, n) ;
#define displayv(v) ;
#define eprintf(...) if(0) fprintf(stderr, "...")
#endif
template<typename T> bool chmin(T &a, const T &b) { return a > b ? a = b, true : false; }
template<typename T> bool chmax(T &a, const T &b) { return a < b ? a = b, true : false; }
template<typename A, typename B>
ostream& operator << (ostream& out, const pair<A, B> &p) {
	return out << '(' << p.first << ", " << p.second << ')';
}
#ifndef LOCAL
char pool[1<<15|1],*it=pool+32768;
#define getchar() (it>=pool+32768?(pool[fread(pool,sizeof(char),\
	1<<15,stdin)]=EOF,*((it=pool)++)):*(it++))
#endif
inline LL readint() {
	LL a = 0; char c = getchar(), p = 0;
	while(isspace(c)) c = getchar();
	if(c == '-') p = 1, c = getchar();
	while(isdigit(c)) a = a*10 + c - '0', c = getchar();
	return p ? -a : a;
}

LL lowdiv(LL x, LL y) {
	assert(y > 0);
	return x / y + (x % y < 0 ? -1 : 0);
}
LL lowmod(LL x, LL y) {
	return x - lowdiv(x, y) * y;
}

const int maxN = 200000 + 5;
int n, m;
LL L, C, a[maxN], b[maxN];
vector<int> h[maxN];

int to[maxN];
vector<int> G[maxN];
LL w[maxN], len[maxN];
bool vis[maxN];
vector<int> loop[maxN];

LL p[maxN];
int id[maxN], clus[maxN];

struct Node {
	LL a, b;
	int c;
	LL coef;
	int i;
	Node() {}
	Node(LL a, LL b, int c, LL coef, int i)
		: a(a), b(b), c(c), coef(coef), i(i) {}
	friend bool operator < (const Node &x, const Node &y) {
		return x.a != y.a ? x.a < y.a
			: x.b != y.b ? x.b < y.b
			: x.c != y.c ? x.c < y.c
			: x.i < y.i;
	}
	Node una() const {
		Node res = *this;
		res.a = 0;
		return res;
	}
};
vector<Node> sz, bigs, sh, tmp;

LL asz[maxN], abigs[maxN], ash[maxN];

LL D[maxN];
void add(int p, LL x) {
	for(; p <= n; p += p & -p) D[p] += x;
}
LL sum(int p) {
	LL r = 0;
	for(; p > 0; p -= p & -p) r += D[p];
	return r;
}
void dnc(vector<Node> &a, int L, int R, LL stat[]) { // tmp size
	if(L >= R) return;
	int M = (L + R) >> 1;
	dnc(a, L, M, stat); dnc(a, M + 1, R, stat);
	
	int k = L;
	auto addL = [&](Node &p) {
		if(p.i < 0) add(p.c, p.coef);
		tmp[k++] = p;
	};
	auto addR = [&](Node &p) {
		if(p.i > 0) stat[p.i] += sum(p.c) * p.coef;
		tmp[k++] = p;
	};
	int i = L, j = M + 1;
	while(i <= M && j <= R) {
		if(a[i].una() < a[j].una()) addL(a[i++]);
		else addR(a[j++]);
	}
	while(i <= M) addL(a[i++]);
	while(j <= R) addR(a[j++]);
	for(int t = L; t <= M; ++t) if(a[t].i < 0) add(a[t].c, -a[t].coef);
	for(int t = L; t <= R; ++t) a[t] = tmp[t];
}

int dfs_clock = 0, pre[maxN], post[maxN], euler[maxN];
void dfs(int u) {
	vis[u] = true;
	euler[pre[u] = ++dfs_clock] = u;
//	eprintf("euler[%d] = %d, p = %lld\n", dfs_clock, u, p[u]);
	
	for(int t : h[u]) {
		sz.emplace_back(0, p[u] + t, pre[u], 1, -u);
		bigs.emplace_back(0, p[u] + t, pre[u], lowdiv(- p[u] - t, len[clus[u]]), -u);
		sh.emplace_back(-lowmod(- p[u] - t, len[clus[u]]), p[u] + t, pre[u], 1, -u);
	}
	
	for(int v : G[u]) if(id[v] == -1) {
		p[v] = p[u] + w[v];
		clus[v] = clus[u];
		dfs(v);
	}
	post[u] = dfs_clock;
}

void build(int u) {
	while(!vis[u]) vis[u] = true, u = to[u];
	vector<int> &loop = ::loop[u];
	loop.push_back(u); p[u] = 0;
	while(to[u] != loop[0]) {
		p[to[u]] = p[u] - w[u];
		u = to[u];
		loop.push_back(u);
	}
	u = loop[0];
	len[u] = 0;
	for(int x : loop) len[u] += w[x];
	for(int i = 0; i < (int)loop.size(); ++i) clus[loop[i]] = u, id[loop[i]] = i;
	displayv(loop);
	displaya(to, 1, n);
	displaya(id, 1, n);
	for(int x : loop) dfs(x);
}

int qu[maxN];
LL qt[maxN];

int main() {
	n = readint(); m = readint(); L = readint(); C = readint();
	for(int i = 1; i <= n; ++i) a[i] = readint();
	for(int j = 1; j <= m; ++j) b[j] = readint();
	
	for(int j = 1; j <= m; ++j) {
		if(a[1] <= b[j]) {
			int i = upper_bound(a + 1, a + n + 1, b[j]) - a;
			--i;
			h[i].push_back(b[j] - a[i]);
		} else {
			h[n].push_back(b[j] + L - a[n]);
		}
	}
	for(int i = 1; i <= n; ++i) sort(h[i].begin(), h[i].end());
	for(int i = 1; i <= n; ++i) {
		int p = a[i] - C;
		p = (p % L + L) % L;
		if(a[1] <= p)
			to[i] = upper_bound(a + 1, a + n + 1, p) - a - 1,
			w[i] = C + p - a[to[i]];
		else
			to[i] = n,
			w[i] = C + p + L - a[to[i]];
	}
	memset(vis, 0, sizeof(vis));
	memset(clus, 0, sizeof(clus));
	memset(id, -1, sizeof(id));
	for(int i = 1; i <= n; ++i) G[to[i]].push_back(i);
	for(int i = 1; i <= n; ++i) if(!vis[i]) build(i);
	
	int q = readint();
	for(int i = 1; i <= q; ++i) {
		int u = readint(); qu[i] = u;
		LL T = readint(); qt[i] = T;
		if(id[u] == -1) {
			sz.emplace_back(0, T + p[u], pre[u] - 1, -1, i);
			sz.emplace_back(0, T + p[u], post[u], +1, i);
		} else {
			vector<int> &loop = ::loop[clus[u]];
			int L = pre[loop[0]], M = post[u], R = post[loop.back()];
			assert(L <= M && M <= R);
			LL len = ::len[clus[u]];
			
			sz.emplace_back(0, T + p[u], L - 1, -1, i);
			sz.emplace_back(0, T + p[u], M, +1, i);
			sz.emplace_back(0, T + p[u] - len, M, -(m + 1), i);
			sz.emplace_back(0, T + p[u] - len, R, +(m + 1), i);
			
			bigs.emplace_back(0, T + p[u], L - 1, -1, i);
			bigs.emplace_back(0, T + p[u], M, +1, i);
			bigs.emplace_back(0, T + p[u] - len, M, -1, i);
			bigs.emplace_back(0, T + p[u] - len, R, +1, i);
			
			LL t2 = lowmod(T + p[u], len);
			sh.emplace_back(t2 - len, T + p[u], L - 1, -1, i);
			sh.emplace_back(t2 - len, T + p[u], M, +1, i);
			sh.emplace_back(t2 - 2 * len, T + p[u], L - 1, -1, i);
			sh.emplace_back(t2 - 2 * len, T + p[u], M, +1, i);
			
			sh.emplace_back(t2 - len, T + p[u] - len, M, -1, i);
			sh.emplace_back(t2 - len, T + p[u] - len, R, +1, i);
			sh.emplace_back(t2 - 2 * len, T + p[u] - len, M, -1, i);
			sh.emplace_back(t2 - 2 * len, T + p[u] - len, R, +1, i);
			
		}
	}
	
	memset(D, 0, sizeof(D));
	sort(sz.begin(), sz.end());
	sort(bigs.begin(), bigs.end());
	sort(sh.begin(), sh.end());
	
	tmp.resize(max({sz.size(), bigs.size(), sh.size()}));
	
	dnc(sz, 0, (int)sz.size() - 1, asz);
	dnc(bigs, 0, (int)bigs.size() - 1, abigs);
	dnc(sh, 0, (int)sh.size() - 1, ash);
	for(int i = 1; i <= q; ++i) {
		int u = qu[i];
		LL T = qt[i];
		LL ans = 0;
		if(id[u] == -1) {
			ans = asz[i];
		} else {
			LL L = len[clus[u]];
			LL lef = asz[i] % (m + 1), rig = asz[i] / (m + 1);
			ans = (lef + rig) * lowdiv(T + p[u], L) + lef;
			ans += abigs[i];
			ans += ash[i];
//			eprintf("len = %lld; %lld %lld %lld %lld\n", L, lef, rig, abigs[i], ash[i]);
		}
		printf("%lld\n", ans);
	}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 27 ms 21020 KB Output is correct
2 Correct 37 ms 21820 KB Output is correct
3 Correct 31 ms 21884 KB Output is correct
4 Correct 22 ms 19416 KB Output is correct
5 Correct 22 ms 19672 KB Output is correct
6 Correct 22 ms 19672 KB Output is correct
7 Correct 23 ms 19672 KB Output is correct
8 Correct 22 ms 19292 KB Output is correct
9 Correct 23 ms 19284 KB Output is correct
10 Correct 22 ms 19292 KB Output is correct
11 Correct 23 ms 19292 KB Output is correct
12 Correct 35 ms 21768 KB Output is correct
13 Correct 36 ms 21888 KB Output is correct
14 Correct 35 ms 21892 KB Output is correct
15 Correct 23 ms 19540 KB Output is correct
16 Correct 23 ms 19544 KB Output is correct
17 Correct 23 ms 19544 KB Output is correct
18 Correct 22 ms 19544 KB Output is correct
19 Correct 22 ms 19544 KB Output is correct
20 Correct 22 ms 19544 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1241 ms 217856 KB Output is correct
2 Correct 334 ms 73932 KB Output is correct
3 Correct 1892 ms 236892 KB Output is correct
4 Correct 1408 ms 239096 KB Output is correct
5 Correct 294 ms 91676 KB Output is correct
6 Correct 302 ms 91676 KB Output is correct
7 Correct 287 ms 64316 KB Output is correct
8 Correct 283 ms 64432 KB Output is correct
9 Correct 1649 ms 232180 KB Output is correct
10 Correct 1394 ms 232312 KB Output is correct
11 Correct 1768 ms 231268 KB Output is correct
12 Correct 1760 ms 231196 KB Output is correct
13 Correct 1753 ms 231104 KB Output is correct
14 Correct 1473 ms 230992 KB Output is correct
15 Correct 1685 ms 232112 KB Output is correct
16 Correct 344 ms 80804 KB Output is correct
17 Correct 298 ms 80540 KB Output is correct
18 Correct 264 ms 61224 KB Output is correct
19 Correct 247 ms 61080 KB Output is correct
20 Correct 271 ms 72272 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 27 ms 21020 KB Output is correct
2 Correct 37 ms 21820 KB Output is correct
3 Correct 31 ms 21884 KB Output is correct
4 Correct 22 ms 19416 KB Output is correct
5 Correct 22 ms 19672 KB Output is correct
6 Correct 22 ms 19672 KB Output is correct
7 Correct 23 ms 19672 KB Output is correct
8 Correct 22 ms 19292 KB Output is correct
9 Correct 23 ms 19284 KB Output is correct
10 Correct 22 ms 19292 KB Output is correct
11 Correct 23 ms 19292 KB Output is correct
12 Correct 35 ms 21768 KB Output is correct
13 Correct 36 ms 21888 KB Output is correct
14 Correct 35 ms 21892 KB Output is correct
15 Correct 23 ms 19540 KB Output is correct
16 Correct 23 ms 19544 KB Output is correct
17 Correct 23 ms 19544 KB Output is correct
18 Correct 22 ms 19544 KB Output is correct
19 Correct 22 ms 19544 KB Output is correct
20 Correct 22 ms 19544 KB Output is correct
21 Correct 1241 ms 217856 KB Output is correct
22 Correct 334 ms 73932 KB Output is correct
23 Correct 1892 ms 236892 KB Output is correct
24 Correct 1408 ms 239096 KB Output is correct
25 Correct 294 ms 91676 KB Output is correct
26 Correct 302 ms 91676 KB Output is correct
27 Correct 287 ms 64316 KB Output is correct
28 Correct 283 ms 64432 KB Output is correct
29 Correct 1649 ms 232180 KB Output is correct
30 Correct 1394 ms 232312 KB Output is correct
31 Correct 1768 ms 231268 KB Output is correct
32 Correct 1760 ms 231196 KB Output is correct
33 Correct 1753 ms 231104 KB Output is correct
34 Correct 1473 ms 230992 KB Output is correct
35 Correct 1685 ms 232112 KB Output is correct
36 Correct 344 ms 80804 KB Output is correct
37 Correct 298 ms 80540 KB Output is correct
38 Correct 264 ms 61224 KB Output is correct
39 Correct 247 ms 61080 KB Output is correct
40 Correct 271 ms 72272 KB Output is correct
41 Correct 754 ms 106472 KB Output is correct
42 Correct 2394 ms 272572 KB Output is correct
43 Correct 1459 ms 237616 KB Output is correct
44 Correct 1756 ms 270944 KB Output is correct
45 Correct 729 ms 127716 KB Output is correct
46 Correct 759 ms 127796 KB Output is correct
47 Correct 710 ms 128648 KB Output is correct
48 Correct 507 ms 124904 KB Output is correct
49 Correct 521 ms 124988 KB Output is correct
50 Correct 678 ms 100276 KB Output is correct
51 Correct 764 ms 100556 KB Output is correct
52 Correct 2270 ms 267256 KB Output is correct
53 Correct 2074 ms 268392 KB Output is correct
54 Correct 2269 ms 267256 KB Output is correct
55 Correct 2212 ms 266572 KB Output is correct
56 Correct 791 ms 116836 KB Output is correct
57 Correct 804 ms 117120 KB Output is correct
58 Correct 757 ms 117732 KB Output is correct
59 Correct 545 ms 113720 KB Output is correct
60 Correct 554 ms 114152 KB Output is correct
61 Correct 597 ms 114148 KB Output is correct
62 Correct 2224 ms 268556 KB Output is correct
63 Correct 632 ms 94824 KB Output is correct
64 Correct 626 ms 94908 KB Output is correct
65 Correct 650 ms 95336 KB Output is correct
66 Correct 571 ms 94220 KB Output is correct
67 Correct 590 ms 94192 KB Output is correct
68 Correct 576 ms 94184 KB Output is correct
69 Correct 704 ms 106732 KB Output is correct
70 Correct 730 ms 107116 KB Output is correct
71 Correct 729 ms 107368 KB Output is correct
72 Correct 719 ms 106848 KB Output is correct