Submission #216894

# Submission time Handle Problem Language Result Execution time Memory
216894 2020-03-28T10:17:02 Z eriksuenderhauf Capital City (JOI20_capital_city) C++11
100 / 100
282 ms 61788 KB
//#pragma GCC optimize("O3")
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define trav(x,a) for (const auto& x: a)
#define sz(x) (int)(x).size()
#define mem(a,v) memset((a), (v), sizeof (a))
#define enl printf("\n")
#define case(t) printf("Case #%d: ", (t))
#define ni(n) scanf("%d", &(n))
#define nl(n) scanf("%I64d", &(n))
#define nai(a, n) for (int _i = 0; _i < (n); _i++) ni(a[_i])
#define nal(a, n) for (int _i = 0; _i < (n); _i++) nl(a[_i])
#define pri(n) printf("%d\n", (n))
#define prl(n) printf("%I64d\n", (n))
#define pii pair<int, int>
#define pll pair<long long, long long>
#define vii vector<pii>
#define vll vector<pll>
#define vi vector<int>
#define vl vector<long long>
#define pb push_back
#define mp make_pair
#define st first
#define nd second
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef cc_hash_table<int,int,hash<int>> ht;
typedef tree<int,null_type,less<int>,rb_tree_tag,tree_order_statistics_node_update> oset;
const double pi = acos(-1);
const int mod = 1e9 + 7;
const int inf = 1e9 + 7;
const int N = 1e6 + 5;
const double eps = 1e-9;

#define log2(x) (31 - __builtin_clz(x))

struct sparse_table {
  int n;
  vector<int> a;
  vector<vector<int>> st;
  int combine(int dl, int dr) {
    return a[dl] > a[dr] ? dl : dr;
  }
  sparse_table() {}
  sparse_table(vector<int> & a) : n(a.size()), a(a), st(log2(n) + 1, vector<int>(n)) {
    for (int i = 0; i < n; i++)
      st[0][i] = i;
    for (int j = 1; 1 << j <= n; j++)
      for (int i = 0; i + (1 << j) <= n; i++)
        st[j][i] = combine(st[j - 1][i], st[j - 1][i + (1 << (j - 1))]);
  }
  // query the data on the range [l, r[
  int query(int l, int r) {
    int s = log2(r - l);
    return combine(st[s][l], st[s][r - (1 << s)]);
  }
};

struct lowest_common_ancestor {
  int n, m = 0;
  vector<int> a, v, h, par;
  vector<vector<int>>& e;
  sparse_table st;
  lowest_common_ancestor(vector<vector<int>> & e, int r) : n(e.size()), a(n), v(2 * n - 1), h(2 * n - 1), e(e), par(n) {
    dfs(r);
    st = sparse_table(h);
  }
  void dfs(int i, int p = -1, int d = 0) {
    par[i] = p;
    a[i] = m; v[m] = i; h[m++] = d;
    for (int j : e[i]) {
      if (j == p)
        continue;
      dfs(j, i, d - 1);
      v[m] = i; h[m++] = d;
    }
  }
  // calculate the lowest common ancestor of x and y
  int lca(int x, int y) {
    return v[st.query(min(a[x], a[y]), max(a[x], a[y]) + 1)];
  }
  int ok(int x, int y) {
    return lca(par[x], y) == y;
  }
};

struct strongly_connected_components {
  int n, v = 0, c = 0;
  vector<bool> ins;
  vector<int> s, num, low, com, cnt;
  vector<vector<int>>& e;
  strongly_connected_components(vector<vector<int>> & e) : n(e.size()), ins(n), num(n, -1), low(n), com(n), e(e), cnt(n) {
    for (int i = 0; i < n; i++)
      if (num[i] == -1)
        dfs(i);
    for (int i = 0; i < n; i++)
      trav(x, e[i])
        if (com[x] != com[i])
          cnt[com[i]] = n+1;
  }
  // use commented lines for biconnected components in undirected graphs
  void dfs(int i) {
  // void dfs(int i, int p = -1) {
    num[i] = low[i] = v++;
    s.push_back(i); ins[i] = true;
    for (int j : e[i]) {
      // if (j == p) {
      //   p = -1;
      //   continue;
      // }
      if (num[j] == -1)
        dfs(j);
        // dfs(j, i);
      if (ins[j])
        low[i] = min(low[i], low[j]);
    }
    if (low[i] == num[i]) {
      int j;
      do {
        j = s.back(); s.pop_back(); ins[j] = false;
        com[j] = c;
        cnt[c]++;
      } while (j != i);
      c++;
    }
  }
};


int en[N], c[N];
// vector<int> st[N], adj[N];
vector<vector<int>> e;

int main() {
  int n, k; scanf("%d %d", &n, &k);
  e.resize(n);
  for (int i = 1, u, v; i < n; i++) {
    scanf("%d %d", &u, &v); u--, v--;
    e[u].push_back(v);
    e[v].push_back(u);
  }
  for (int i = 0; i < n; i++) {
    scanf("%d", &c[i]); c[i]--;
    en[c[i]] = i;
  }
  lowest_common_ancestor l(e, 0);
  for (int i = 0; i < n; i++)
    en[c[i]] = l.lca(en[c[i]], i);
  vector<vector<int>> f(k);
  for (int i = 0; i < n; i++) {
    if (l.par[i] != -1 && c[i] != c[l.par[i]] && l.ok(i, en[c[i]])) {
      f[c[i]].pb(c[l.par[i]]);
      // cout << c[i]+1 << " " << c[l.par[i]]+1 << endl;
    }
  }
  strongly_connected_components sc(f);
  int ans = k-1;
  for (int i = 0; i < sc.c; i++)
    ans = min(ans, sc.cnt[i] - 1);
  printf("%d\n", ans);
  return 0;
}

Compilation message

capital_city.cpp: In constructor 'lowest_common_ancestor::lowest_common_ancestor(std::vector<std::vector<int> >&, int)':
capital_city.cpp:64:24: warning: 'lowest_common_ancestor::e' will be initialized after [-Wreorder]
   vector<vector<int>>& e;
                        ^
capital_city.cpp:63:24: warning:   'std::vector<int> lowest_common_ancestor::par' [-Wreorder]
   vector<int> a, v, h, par;
                        ^~~
capital_city.cpp:66:3: warning:   when initialized here [-Wreorder]
   lowest_common_ancestor(vector<vector<int>> & e, int r) : n(e.size()), a(n), v(2 * n - 1), h(2 * n - 1), e(e), par(n) {
   ^~~~~~~~~~~~~~~~~~~~~~
capital_city.cpp: In constructor 'strongly_connected_components::strongly_connected_components(std::vector<std::vector<int> >&)':
capital_city.cpp:93:24: warning: 'strongly_connected_components::e' will be initialized after [-Wreorder]
   vector<vector<int>>& e;
                        ^
capital_city.cpp:92:33: warning:   'std::vector<int> strongly_connected_components::cnt' [-Wreorder]
   vector<int> s, num, low, com, cnt;
                                 ^~~
capital_city.cpp:94:3: warning:   when initialized here [-Wreorder]
   strongly_connected_components(vector<vector<int>> & e) : n(e.size()), ins(n), num(n, -1), low(n), com(n), e(e), cnt(n) {
   ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
capital_city.cpp: In function 'int main()':
capital_city.cpp:137:18: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   int n, k; scanf("%d %d", &n, &k);
             ~~~~~^~~~~~~~~~~~~~~~~
capital_city.cpp:140:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf("%d %d", &u, &v); u--, v--;
     ~~~~~^~~~~~~~~~~~~~~~~
capital_city.cpp:145:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf("%d", &c[i]); c[i]--;
     ~~~~~^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 4 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 4 ms 384 KB Output is correct
4 Correct 4 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 384 KB Output is correct
7 Correct 4 ms 384 KB Output is correct
8 Correct 4 ms 384 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 4 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 4 ms 384 KB Output is correct
4 Correct 4 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 384 KB Output is correct
7 Correct 4 ms 384 KB Output is correct
8 Correct 4 ms 384 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 4 ms 384 KB Output is correct
11 Correct 6 ms 768 KB Output is correct
12 Correct 6 ms 768 KB Output is correct
13 Correct 6 ms 768 KB Output is correct
14 Correct 6 ms 768 KB Output is correct
15 Correct 6 ms 768 KB Output is correct
16 Correct 6 ms 768 KB Output is correct
17 Correct 6 ms 768 KB Output is correct
18 Correct 6 ms 768 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 6 ms 768 KB Output is correct
21 Correct 6 ms 768 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 6 ms 768 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 7 ms 768 KB Output is correct
26 Correct 7 ms 768 KB Output is correct
27 Correct 6 ms 768 KB Output is correct
28 Correct 7 ms 768 KB Output is correct
29 Correct 6 ms 768 KB Output is correct
30 Correct 6 ms 768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 251 ms 61788 KB Output is correct
2 Correct 163 ms 61532 KB Output is correct
3 Correct 248 ms 61660 KB Output is correct
4 Correct 164 ms 61612 KB Output is correct
5 Correct 248 ms 59996 KB Output is correct
6 Correct 169 ms 61532 KB Output is correct
7 Correct 233 ms 59612 KB Output is correct
8 Correct 163 ms 60128 KB Output is correct
9 Correct 234 ms 56796 KB Output is correct
10 Correct 245 ms 55900 KB Output is correct
11 Correct 237 ms 57052 KB Output is correct
12 Correct 249 ms 58076 KB Output is correct
13 Correct 237 ms 55772 KB Output is correct
14 Correct 237 ms 58204 KB Output is correct
15 Correct 253 ms 58076 KB Output is correct
16 Correct 234 ms 56156 KB Output is correct
17 Correct 234 ms 56412 KB Output is correct
18 Correct 243 ms 56688 KB Output is correct
19 Correct 236 ms 57696 KB Output is correct
20 Correct 244 ms 58644 KB Output is correct
21 Correct 5 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 4 ms 384 KB Output is correct
4 Correct 4 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 384 KB Output is correct
7 Correct 4 ms 384 KB Output is correct
8 Correct 4 ms 384 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 4 ms 384 KB Output is correct
11 Correct 6 ms 768 KB Output is correct
12 Correct 6 ms 768 KB Output is correct
13 Correct 6 ms 768 KB Output is correct
14 Correct 6 ms 768 KB Output is correct
15 Correct 6 ms 768 KB Output is correct
16 Correct 6 ms 768 KB Output is correct
17 Correct 6 ms 768 KB Output is correct
18 Correct 6 ms 768 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 6 ms 768 KB Output is correct
21 Correct 6 ms 768 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 6 ms 768 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 7 ms 768 KB Output is correct
26 Correct 7 ms 768 KB Output is correct
27 Correct 6 ms 768 KB Output is correct
28 Correct 7 ms 768 KB Output is correct
29 Correct 6 ms 768 KB Output is correct
30 Correct 6 ms 768 KB Output is correct
31 Correct 251 ms 61788 KB Output is correct
32 Correct 163 ms 61532 KB Output is correct
33 Correct 248 ms 61660 KB Output is correct
34 Correct 164 ms 61612 KB Output is correct
35 Correct 248 ms 59996 KB Output is correct
36 Correct 169 ms 61532 KB Output is correct
37 Correct 233 ms 59612 KB Output is correct
38 Correct 163 ms 60128 KB Output is correct
39 Correct 234 ms 56796 KB Output is correct
40 Correct 245 ms 55900 KB Output is correct
41 Correct 237 ms 57052 KB Output is correct
42 Correct 249 ms 58076 KB Output is correct
43 Correct 237 ms 55772 KB Output is correct
44 Correct 237 ms 58204 KB Output is correct
45 Correct 253 ms 58076 KB Output is correct
46 Correct 234 ms 56156 KB Output is correct
47 Correct 234 ms 56412 KB Output is correct
48 Correct 243 ms 56688 KB Output is correct
49 Correct 236 ms 57696 KB Output is correct
50 Correct 244 ms 58644 KB Output is correct
51 Correct 5 ms 384 KB Output is correct
52 Correct 248 ms 51804 KB Output is correct
53 Correct 248 ms 51804 KB Output is correct
54 Correct 252 ms 51932 KB Output is correct
55 Correct 246 ms 51808 KB Output is correct
56 Correct 242 ms 51804 KB Output is correct
57 Correct 253 ms 51952 KB Output is correct
58 Correct 245 ms 54876 KB Output is correct
59 Correct 238 ms 55132 KB Output is correct
60 Correct 275 ms 55748 KB Output is correct
61 Correct 270 ms 55516 KB Output is correct
62 Correct 163 ms 61532 KB Output is correct
63 Correct 164 ms 61464 KB Output is correct
64 Correct 162 ms 60508 KB Output is correct
65 Correct 164 ms 61404 KB Output is correct
66 Correct 211 ms 55252 KB Output is correct
67 Correct 198 ms 55128 KB Output is correct
68 Correct 202 ms 55252 KB Output is correct
69 Correct 217 ms 55360 KB Output is correct
70 Correct 202 ms 55252 KB Output is correct
71 Correct 199 ms 55252 KB Output is correct
72 Correct 215 ms 55380 KB Output is correct
73 Correct 198 ms 54868 KB Output is correct
74 Correct 209 ms 55256 KB Output is correct
75 Correct 212 ms 55380 KB Output is correct
76 Correct 239 ms 57948 KB Output is correct
77 Correct 251 ms 57692 KB Output is correct
78 Correct 276 ms 56540 KB Output is correct
79 Correct 257 ms 55644 KB Output is correct
80 Correct 258 ms 58204 KB Output is correct
81 Correct 251 ms 57000 KB Output is correct
82 Correct 234 ms 57052 KB Output is correct
83 Correct 245 ms 55644 KB Output is correct
84 Correct 241 ms 58076 KB Output is correct
85 Correct 249 ms 57308 KB Output is correct
86 Correct 242 ms 55644 KB Output is correct
87 Correct 251 ms 56260 KB Output is correct
88 Correct 282 ms 56540 KB Output is correct
89 Correct 242 ms 55132 KB Output is correct
90 Correct 236 ms 55004 KB Output is correct
91 Correct 265 ms 56028 KB Output is correct
92 Correct 242 ms 55388 KB Output is correct
93 Correct 234 ms 55260 KB Output is correct
94 Correct 236 ms 55004 KB Output is correct
95 Correct 242 ms 55644 KB Output is correct
96 Correct 234 ms 55132 KB Output is correct
97 Correct 235 ms 55900 KB Output is correct