Submission #203169

# Submission time Handle Problem Language Result Execution time Memory
203169 2020-02-19T15:31:20 Z godwind Olympic Bus (JOI20_ho_t4) C++14
100 / 100
346 ms 2356 KB
// O O O O O O O O O O O O O O O OO O OO O OO O O O TTCH O TTTCH O TTTCH O O O O
#pragma GCC optimize("Ofast")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("fast-math")
#pragma GCC target("sse,sse2,sse3,ssse3,popcnt,abm,mmx")
#include <iostream>
#include <vector>
#include <algorithm>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include <stdio.h>
#include <cstdio>
#include <math.h>
#include <cmath>
#include <string>
#include <cstring>
#include <queue>
#include <deque>
// #include <random>
#include <iomanip>
#include <bitset>
#include <cassert>
 
using namespace std;


#define y1 y11
#define double long double
#define less less228
#define left left228
#define right right228
#define list list228
 
 
 
template<typename T> void uin(T &a, T b) {
    if (b < a) a = b;
}
template<typename T> void uax(T &a, T b) {
    if (b > a) a = b;
}
 
 
// random_device rnd;
 
// template<typename T> void shuffle(vector< T > &v) {
//     for (int i = 1; i < (int)v.size(); ++i) {
//         swap(v[rnd() % i], v[i]);
//     }
//     for (int i = (int)v.size() - 1; i; --i) {
//         swap(v[rnd() % i], v[i]);
//     }
// }

const int N = 228;
const int M = 50 * 1000 + 228;
const int INF = 1e9 + 228;

struct Edge
{
    int u, v, c, d;
    Edge() {}
    Edge(int _u, int _v, int _c, int _d) {u = _u, v = _v, c = _c, d = _d;}
};

int n, m;
int U[M], V[M], C[M], D[M];
bool taken[M];
int from1[N], fromn[N], to1[N], ton[N];
int d[N], pr[N];
vector<int> g[N];
priority_queue< pair<int, int> > q;

int kekos(int s, int t) {
    for (int i = 1; i <= n; ++i) {
        d[i] = INF;
        pr[i] = -1;
    }
    d[s] = 0;
    q.push({0, s});
    while (!q.empty()) {
        pair<int, int> P = q.top();
        q.pop();
        int v = P.second;
        for (int i : g[v]) {
            if (d[v] + C[i] < d[V[i]]) {
                d[V[i]] = d[v] + C[i];
                pr[V[i]] = i;
                q.push({-d[V[i]], V[i]});
            }
        }
    }
    int x = d[t];
    if (x == INF) return x;
    while (t != s) {
        taken[pr[t]] = 1;
        t = U[pr[t]];
    }
    return x;
}

int dij(int s, int t) {
    for (int i = 1; i <= n; ++i) {
        d[i] = INF;
    }
    d[s] = 0;
    q.push({0, s});
    while (!q.empty()) {
        pair<int, int> P = q.top();
        q.pop();
        int v = P.second;
        for (int i : g[v]) {
            if (d[v] + C[i] < d[V[i]]) {
                d[V[i]] = d[v] + C[i];
                q.push({-d[V[i]], V[i]});
            }
        }
    }
    return d[t];
}

bool used[N];

int fast_dij(int s, int t) {
    for (int i = 1; i <= n; ++i) {
        d[i] = INF;
    }
    memset(used, 0, sizeof used);
    d[s] = 0;
    for (int it = 0; it < n; ++it) {
        int v = 0;
        for (int i = 1; i <= n; ++i) {
            if (!used[i]) {
                if (v == 0 || d[i] < d[v]) v = i;
            }
        }
        used[v] = 1;
        for (int i : g[v]) {
            if (d[v] + C[i] < d[V[i]]) {
                d[V[i]] = d[v] + C[i];
            }
        }
    }
    return d[t];
}

void reset() {
    for (int i = 1; i <= n; ++i) {
        g[i].clear();
    }
    for (int i = m - 1; i + 1; --i) {
        g[U[i]].push_back(i);
    }
}

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cin >> n >> m;
    vector< Edge > edges;
    for (int i = 0; i < m; ++i) {
        cin >> U[i] >> V[i] >> C[i] >> D[i];
        edges.emplace_back(U[i], V[i], C[i], D[i]);
        g[U[i]].emplace_back(i);
    }
    int path1 = kekos(1, n);
    int path2 = kekos(n, 1);
    int answer = 2 * INF;
    if (path1 != INF && path2 != INF) {
        uin(answer, path1 + path2);
    }
    dij(1, 0);
    for (int i = 1; i <= n; ++i) {
        from1[i] = d[i];
    }
    dij(n, 0);
    for (int i = 1; i <= n; ++i) {
        fromn[i] = d[i];
    }
    for (int i = 0; i < m; ++i) {
        swap(U[i], V[i]);
    }
    reset();
    dij(1, 0);
    for (int i = 1; i <= n; ++i) {
        to1[i] = d[i];
    }
    dij(n, 0);
    for (int i = 1; i <= n; ++i) {
        ton[i] = d[i];
    }
    for (int i = 0; i < m; ++i) {
        swap(U[i], V[i]);
    }
    reset();
    for (int E = 0; E < m; ++E) {
        if (!taken[E]) {
            int npath1 = min(path1, from1[V[E]] + ton[U[E]] + C[E]);
            int npath2 = min(path2, fromn[V[E]] + to1[U[E]] + C[E]);
            if (npath1 < INF && npath2 < INF) {
                uin(answer, D[E] + npath1 + npath2);
            }
        } else {
            swap(U[E], V[E]);
            reset();
            int go1 = fast_dij(1, n);
            if (go1 < INF) {
                int go2 = fast_dij(n, 1);
                if (go2 < INF) {
                    uin(answer, D[E] + go1 + go2);
                }
            }
            swap(U[E], V[E]);
        }
    }
    if (answer > 2 * INF - 1000000) answer = -1;
    cout << answer << '\n';
    return 0;
}
// RU_023
 
/*
4 5
1 2 4 4
1 3 2 1
4 3 1 2
4 1 6 1
2 4 2 5
---
10


4 10
1 2 4 4
1 2 4 4
1 3 2 1
1 3 2 1
4 3 1 2
4 3 1 2
4 1 6 1
4 1 6 1
2 4 2 5
2 4 2 5
---
10

4 4
1 2 0 4
1 3 0 1
4 3 0 2
4 1 0 1
---
2



4 5
1 2 4 4
1 3 2 4
4 3 1 5
4 1 6 1
2 4 2 5
---
12


4 5
2 1 4 4
1 3 2 1
4 3 1 2
4 3 6 1
2 4 2 5
---
-1

*/



# Verdict Execution time Memory Grader output
1 Correct 7 ms 376 KB Output is correct
2 Correct 5 ms 376 KB Output is correct
3 Correct 7 ms 376 KB Output is correct
4 Correct 8 ms 376 KB Output is correct
5 Correct 5 ms 376 KB Output is correct
6 Correct 5 ms 376 KB Output is correct
7 Correct 5 ms 376 KB Output is correct
8 Correct 5 ms 376 KB Output is correct
9 Correct 5 ms 376 KB Output is correct
10 Correct 49 ms 376 KB Output is correct
11 Correct 65 ms 380 KB Output is correct
12 Correct 59 ms 376 KB Output is correct
13 Correct 5 ms 380 KB Output is correct
14 Correct 8 ms 376 KB Output is correct
15 Correct 6 ms 376 KB Output is correct
16 Correct 7 ms 376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 38 ms 2344 KB Output is correct
2 Correct 37 ms 2356 KB Output is correct
3 Correct 38 ms 2348 KB Output is correct
4 Correct 7 ms 504 KB Output is correct
5 Correct 8 ms 376 KB Output is correct
6 Correct 5 ms 380 KB Output is correct
7 Correct 5 ms 376 KB Output is correct
8 Correct 5 ms 376 KB Output is correct
9 Correct 32 ms 2348 KB Output is correct
10 Correct 30 ms 2340 KB Output is correct
11 Correct 39 ms 2344 KB Output is correct
12 Correct 37 ms 2348 KB Output is correct
13 Correct 37 ms 2348 KB Output is correct
14 Correct 37 ms 2348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 376 KB Output is correct
2 Correct 5 ms 376 KB Output is correct
3 Correct 25 ms 2100 KB Output is correct
4 Correct 5 ms 380 KB Output is correct
5 Correct 35 ms 2352 KB Output is correct
6 Correct 5 ms 376 KB Output is correct
7 Correct 5 ms 376 KB Output is correct
8 Correct 26 ms 2340 KB Output is correct
9 Correct 26 ms 2340 KB Output is correct
10 Correct 30 ms 2344 KB Output is correct
11 Correct 29 ms 2348 KB Output is correct
12 Correct 31 ms 2352 KB Output is correct
13 Correct 5 ms 376 KB Output is correct
14 Correct 5 ms 376 KB Output is correct
15 Correct 4 ms 376 KB Output is correct
16 Correct 6 ms 380 KB Output is correct
17 Correct 5 ms 376 KB Output is correct
18 Correct 5 ms 376 KB Output is correct
19 Correct 31 ms 2348 KB Output is correct
20 Correct 33 ms 2352 KB Output is correct
21 Correct 28 ms 2348 KB Output is correct
22 Correct 30 ms 2348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 7 ms 376 KB Output is correct
2 Correct 5 ms 376 KB Output is correct
3 Correct 7 ms 376 KB Output is correct
4 Correct 8 ms 376 KB Output is correct
5 Correct 5 ms 376 KB Output is correct
6 Correct 5 ms 376 KB Output is correct
7 Correct 5 ms 376 KB Output is correct
8 Correct 5 ms 376 KB Output is correct
9 Correct 5 ms 376 KB Output is correct
10 Correct 49 ms 376 KB Output is correct
11 Correct 65 ms 380 KB Output is correct
12 Correct 59 ms 376 KB Output is correct
13 Correct 5 ms 380 KB Output is correct
14 Correct 8 ms 376 KB Output is correct
15 Correct 6 ms 376 KB Output is correct
16 Correct 7 ms 376 KB Output is correct
17 Correct 38 ms 2344 KB Output is correct
18 Correct 37 ms 2356 KB Output is correct
19 Correct 38 ms 2348 KB Output is correct
20 Correct 7 ms 504 KB Output is correct
21 Correct 8 ms 376 KB Output is correct
22 Correct 5 ms 380 KB Output is correct
23 Correct 5 ms 376 KB Output is correct
24 Correct 5 ms 376 KB Output is correct
25 Correct 32 ms 2348 KB Output is correct
26 Correct 30 ms 2340 KB Output is correct
27 Correct 39 ms 2344 KB Output is correct
28 Correct 37 ms 2348 KB Output is correct
29 Correct 37 ms 2348 KB Output is correct
30 Correct 37 ms 2348 KB Output is correct
31 Correct 8 ms 376 KB Output is correct
32 Correct 5 ms 376 KB Output is correct
33 Correct 25 ms 2100 KB Output is correct
34 Correct 5 ms 380 KB Output is correct
35 Correct 35 ms 2352 KB Output is correct
36 Correct 5 ms 376 KB Output is correct
37 Correct 5 ms 376 KB Output is correct
38 Correct 26 ms 2340 KB Output is correct
39 Correct 26 ms 2340 KB Output is correct
40 Correct 30 ms 2344 KB Output is correct
41 Correct 29 ms 2348 KB Output is correct
42 Correct 31 ms 2352 KB Output is correct
43 Correct 5 ms 376 KB Output is correct
44 Correct 5 ms 376 KB Output is correct
45 Correct 4 ms 376 KB Output is correct
46 Correct 6 ms 380 KB Output is correct
47 Correct 5 ms 376 KB Output is correct
48 Correct 5 ms 376 KB Output is correct
49 Correct 31 ms 2348 KB Output is correct
50 Correct 33 ms 2352 KB Output is correct
51 Correct 28 ms 2348 KB Output is correct
52 Correct 30 ms 2348 KB Output is correct
53 Correct 38 ms 2352 KB Output is correct
54 Correct 41 ms 2348 KB Output is correct
55 Correct 41 ms 2352 KB Output is correct
56 Correct 7 ms 380 KB Output is correct
57 Correct 7 ms 376 KB Output is correct
58 Correct 155 ms 2100 KB Output is correct
59 Correct 175 ms 2100 KB Output is correct
60 Correct 226 ms 2096 KB Output is correct
61 Correct 152 ms 2100 KB Output is correct
62 Correct 173 ms 2100 KB Output is correct
63 Correct 228 ms 2096 KB Output is correct
64 Correct 249 ms 2352 KB Output is correct
65 Correct 263 ms 2100 KB Output is correct
66 Correct 346 ms 2100 KB Output is correct
67 Correct 24 ms 2228 KB Output is correct
68 Correct 33 ms 2344 KB Output is correct
69 Correct 33 ms 2340 KB Output is correct
70 Correct 41 ms 2348 KB Output is correct
71 Correct 39 ms 2348 KB Output is correct
72 Correct 36 ms 2344 KB Output is correct
73 Correct 37 ms 2348 KB Output is correct
74 Correct 39 ms 2352 KB Output is correct