Submission #200764

# Submission time Handle Problem Language Result Execution time Memory
200764 2020-02-08T05:58:51 Z taotao54321 Crayfish scrivener (IOI12_scrivener) C++17
100 / 100
475 ms 95152 KB
/**
 * 
 */

#define ASSERT_LV 1
// header {{{
#ifndef ASSERT_LV
# define ASSERT_LV 1
#endif
#if ASSERT_LV == 0
# define NDEBUG
#endif

#if defined(__GNUC__) && !defined(__clang__)
#include <bits/stdc++.h>
#else
#include <cassert>
#include <cctype>
#include <cerrno>
#include <cfloat>
#include <ciso646>
#include <climits>
//#include <clocale>
#include <cmath>
//#include <csetjmp>
//#include <csignal>
#include <cstdarg>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
//#include <cwchar>
//#include <cwctype>
#if __cplusplus >= 201103L
//#include <ccomplex>
#include <cfenv>
#include <cinttypes>
//#include <cstdalign>
//#include <cstdbool>
#include <cstdint>
//#include <ctgmath>
//#include <cuchar>
#endif
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
//#include <locale>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <typeinfo>
#include <utility>
#include <valarray>
#include <vector>
#if __cplusplus >= 201103L
#include <array>
//#include <atomic>
#include <chrono>
//#include <codecvt>
//#include <condition_variable>
#include <forward_list>
//#include <future>
#include <initializer_list>
//#include <mutex>
#include <random>
#include <ratio>
#include <regex>
#include <scoped_allocator>
//#include <system_error>
#include <thread>
#include <tuple>
#include <typeindex>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#endif
#if __cplusplus >= 201402L
//#include <shared_mutex>
#endif
#if __cplusplus >= 201703L
#include <any>
//#include <charconv>
//#include <execution>
//#include <filesystem>
#include <optional>
//#include <memory_resource>
#include <string_view>
#include <variant>
#endif
#endif
using namespace std;

using i8  = int8_t;
using u8  = uint8_t;
using i16 = int16_t;
using u16 = uint16_t;
using i32 = int32_t;
using u32 = uint32_t;
using i64 = int64_t;
using u64 = uint64_t;
#ifdef __SIZEOF_INT128__
using i128 = __int128;
using u128 = unsigned __int128;
#endif

using f32 = float;
using f64 = double;
using f80 = long double;

template<class T> constexpr T PROCON_INF();
// }}}

using Real = f80;

template<> constexpr i64  PROCON_INF<i64>()  { return INT64_C(1'010'000'000'000'000'017); }
template<> constexpr Real PROCON_INF<Real>() { return Real(1e100L); }

constexpr i64 MOD = INT64_C(1'000'000'007);
//constexpr i64 MOD = INT64_C(998'244'353);

constexpr Real EPS = Real(1e-10L);

constexpr int  COUT_PREC      = 15;
constexpr bool COUT_AUTOFLUSH = false;

// procon {{{

#define CPP_STR(x) CPP_STR_I(x)
#define CPP_CAT(x,y) CPP_CAT_I(x,y)
#define CPP_STR_I(args...) #args
#define CPP_CAT_I(x,y) x ## y

#define SFINAE(pred...) std::enable_if_t<(pred), std::nullptr_t> = nullptr

#define ASSERT(expr...) assert((expr))
#if defined(PROCON_LOCAL) || ASSERT_LV >= 2
# define ASSERT_LOCAL(expr...) assert((expr))
#else
# define ASSERT_LOCAL(expr...)
#endif

constexpr i64  INF  = PROCON_INF<i64>();
constexpr Real FINF = PROCON_INF<Real>();

constexpr Real PI = Real(3.141592653589793238462643383279502884197L);

template<class T, SFINAE(is_signed<T>::value)>
constexpr T ABS(T x) noexcept {
    return x < 0 ? -x : x;
}

constexpr bool LT_EPS(Real lhs, Real rhs, Real eps=EPS) { return lhs < rhs-eps; }
constexpr bool GT_EPS(Real lhs, Real rhs, Real eps=EPS) { return lhs > rhs+eps; }
constexpr bool EQ_EPS(Real lhs, Real rhs, Real eps=EPS) { return ABS(lhs-rhs) <= eps; }

constexpr bool EQ_EXACT(Real lhs, Real rhs) {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
    return lhs == rhs;
#pragma GCC diagnostic pop
}

#define FOR(i, start, end) for(i64 i = (start), CPP_CAT(i,xxxx_end)=(end); i < CPP_CAT(i,xxxx_end); ++i)
#define REP(i, n) FOR(i, 0, n)
#define LOOP(n) REP(CPP_CAT(macro_loop_counter,__COUNTER__), n)

#define ALL(f,c,...) (([&](decltype((c)) cccc) { return (f)(std::begin(cccc), std::end(cccc), ## __VA_ARGS__); })(c))
#define SLICE(f,c,l,r,...) (([&](decltype((c)) cccc, decltype((l)) llll, decltype((r)) rrrr) {\
    auto iiii = llll <= rrrr ? std::begin(cccc)+llll : std::end(cccc);\
    auto jjjj = llll <= rrrr ? std::begin(cccc)+rrrr : std::end(cccc);\
    return (f)(iiii, jjjj, ## __VA_ARGS__);\
})(c,l,r))

#define LIFT(f) ([](auto&&... args) -> decltype(auto) { return (f)(std::forward<decltype(args)>(args)...); })

template<class C>
constexpr i64 SIZE(const C& c) noexcept { return static_cast<i64>(c.size()); }

template<class T, size_t N>
constexpr i64 SIZE(const T (&)[N]) noexcept { return static_cast<i64>(N); }

constexpr bool is_odd (i64 x) { return x%2 != 0; }
constexpr bool is_even(i64 x) { return x%2 == 0; }

template<class T>
constexpr i64 CMP(T x, T y) noexcept { return (y<x) - (x<y); }

template<class T>
constexpr i64 SGN(T x) noexcept { return CMP(x,T(0)); }

template<class T1, class T2, class Comp=less<>,
         SFINAE(
             is_integral<T1>::value &&
             is_integral<T2>::value &&
             is_signed<T1>::value != is_unsigned<T2>::value
         )>
constexpr auto MAX(T1 x, T2 y, Comp comp={}) {
    return max<common_type_t<T1,T2>>({x,y}, comp);
}

template<class T1, class T2, class Comp=less<>,
         SFINAE(
             is_floating_point<T1>::value &&
             is_floating_point<T2>::value
         )>
constexpr auto MAX(T1 x, T2 y, Comp comp={}) {
    return max<common_type_t<T1,T2>>({x,y}, comp);
}

template<class T, class Comp=less<>>
constexpr const T& MAX(const T& x, const T& y, Comp comp={}) {
    return max(x, y, comp);
}

template<class T, class Comp=less<>>
constexpr T MAX(initializer_list<T> ilist, Comp comp={}) {
    return max(ilist, comp);
}

template<class T1, class T2, class Comp=less<>,
         SFINAE(
             is_integral<T1>::value &&
             is_integral<T2>::value &&
             is_signed<T1>::value != is_unsigned<T2>::value
         )>
constexpr auto MIN(T1 x, T2 y, Comp comp={}) {
    return min<common_type_t<T1,T2>>({x,y}, comp);
}

template<class T1, class T2, class Comp=less<>,
         SFINAE(
             is_floating_point<T1>::value &&
             is_floating_point<T2>::value
         )>
constexpr auto MIN(T1 x, T2 y, Comp comp={}) {
    return min<common_type_t<T1,T2>>({x,y}, comp);
}

template<class T, class Comp=less<>>
constexpr const T& MIN(const T& x, const T& y, Comp comp={}) {
    return min(x, y, comp);
}

template<class T, class Comp=less<>>
constexpr T MIN(initializer_list<T> ilist, Comp comp={}) {
    return min(ilist, comp);
}

template<class T, class U, class Comp=less<>>
constexpr bool chmax(T& xmax, const U& x, Comp comp={}) noexcept {
    if(comp(xmax, x)) {
        xmax = x;
        return true;
    }
    return false;
}

template<class T, class U, class Comp=less<>>
constexpr bool chmin(T& xmin, const U& x, Comp comp={}) noexcept {
    if(comp(x, xmin)) {
        xmin = x;
        return true;
    }
    return false;
}

template<class BinaryFunc, class UnaryFunc>
auto ON(BinaryFunc&& bf, UnaryFunc&& uf) {
    return [bf=forward<BinaryFunc>(bf),uf=forward<UnaryFunc>(uf)](const auto& x, const auto& y) {
        return bf(uf(x), uf(y));
    };
}

template<class F>
auto LT_ON(F&& f) {
    return ON(less<>{}, forward<F>(f));
}

template<class F>
auto GT_ON(F&& f) {
    return ON(greater<>{}, forward<F>(f));
}

template<class F>
auto NOT_FN(F&& f) {
    return [f=forward<F>(f)](auto&&... args) -> bool { return !f(forward<decltype(args)>(args)...); };
}

struct IDENTITY {
    using is_transparent = void;

    template<class T>
    constexpr decltype(auto) operator()(T&& x) const { return forward<T>(x); }
};

// ビット演算 {{{
// 引数は [-INF,INF] のみ想定
constexpr i64 BIT_I(i64 i) {
    return 1LL << i;
}

constexpr i64 BIT_I_1(i64 i) {
    return BIT_I(i) - 1;
}

constexpr i64 BIT_GET(i64 x, i64 i) {
    return x & BIT_I(i);
}

constexpr bool BIT_TEST(i64 x, i64 i) {
    return BIT_GET(x,i) != 0;
}

constexpr i64 BIT_SET(i64 x, i64 i) {
    return x | BIT_I(i);
}

constexpr i64 BIT_CLEAR(i64 x, i64 i) {
    return x & ~BIT_I(i);
}

constexpr i64 BIT_FLIP(i64 x, i64 i) {
    return x ^ BIT_I(i);
}

constexpr i64 BIT_ASSIGN(i64 x, i64 i, bool b) {
    return b ? BIT_SET(x,i) : BIT_CLEAR(x,i);
}

constexpr i64 BIT_COUNT_LEADING_ZEROS(i64 x) {
    if(x == 0) return 64;
    return __builtin_clzll(x);
}

constexpr i64 BIT_COUNT_TRAILING_ZEROS(i64 x) {
    if(x == 0) return 64;
    return __builtin_ctzll(x);
}

constexpr i64 BIT_COUNT_ONES(i64 x) {
    return __builtin_popcountll(x);
}

// 1の個数が奇数なら1, 偶数なら0を返す
constexpr i64 BIT_PARITY(i64 x) {
    return __builtin_parityll(x);
}

// X ⊆ {0,1,...,n-1}, |X| = k なる部分集合 X を昇順に列挙する
// comb(n,k) 個
//
// ```
// i64 x = BIT_I_1(3);
// do {
//     // ...
// } while(BIT_NEXT_SET_SIZED(x, 10));
// ```
constexpr bool BIT_NEXT_SET_SIZED(i64& x, i64 n) {
    if(x == 0) return false;
    i64 t = (x|(x-1)) + 1;
    x = t | ((~t&(t-1)) >> (BIT_COUNT_TRAILING_ZEROS(x)+1));
    return x < BIT_I(n);
}

// 集合 Y の部分集合 X を昇順に列挙する
// 2^|Y| 個
//
// ```
// i64 y = 0b10101;
// i64 x = 0;
// do {
//     // ...
// } while(BIT_NEXT_SUBSET(x, y));
// ```
constexpr bool BIT_NEXT_SUBSET(i64& x, i64 y) {
    if(x == y) return false;
    x = (x-y) & y;
    return true;
}

// 集合 Y の部分集合 X を降順に列挙する
// 2^|Y| 個
//
// ```
// i64 y = 0b10101;
// i64 x = y;
// do {
//     // ...
// } while(BIT_PREV_SUBSET(x, y));
// ```
constexpr bool BIT_PREV_SUBSET(i64& x, i64 y) {
    if(x == 0) return false;
    x = (x-1) & y;
    return true;
}

// 集合 Y を包含する集合 X ⊆ {0,1,...,n-1} を昇順に列挙する
// 2^(n-|Y|) 個
//
// ```
// i64 y = 0b00010101;
// i64 x = y;
// do {
//     // ...
// } while(BIT_NEXT_SUPERSET(x, 8, y));
// ```
constexpr bool BIT_NEXT_SUPERSET(i64& x, i64 n, i64 y) {
    x = (x+1) | y;
    return x < BIT_I(n);
}
// }}}

[[noreturn]] void EXIT() {
    cout.flush();
#ifdef PROCON_LOCAL
    cerr.flush();
    exit(0);
#else
    _Exit(0);
#endif
}

// tuple {{{
template<i64 I=0, class F, class... TS, SFINAE(sizeof...(TS) == I)>
void tuple_enumerate(tuple<TS...>&, F&&) {}

template<i64 I=0, class F, class... TS, SFINAE(sizeof...(TS) > I)>
void tuple_enumerate(tuple<TS...>& t, F&& f) {
    f(I, get<I>(t));
    tuple_enumerate<I+1>(t, forward<F>(f));
}

template<i64 I=0, class F, class... TS, SFINAE(sizeof...(TS) == I)>
void tuple_enumerate(const tuple<TS...>&, F&&) {}

template<i64 I=0, class F, class... TS, SFINAE(sizeof...(TS) > I)>
void tuple_enumerate(const tuple<TS...>& t, F&& f) {
    f(I, get<I>(t));
    tuple_enumerate<I+1>(t, forward<F>(f));
}
// }}}

// container {{{
template<class T> struct is_container : false_type {};
template<class T, size_t N> struct is_container<array<T,N>> : true_type {};
template<class... Args> struct is_container<vector<Args...>> : true_type {};
template<class... Args> struct is_container<deque<Args...>> : true_type {};
template<class... Args> struct is_container<list<Args...>> : true_type {};
template<class... Args> struct is_container<forward_list<Args...>> : true_type {};
template<class... Args> struct is_container<set<Args...>> : true_type {};
template<class... Args> struct is_container<multiset<Args...>> : true_type {};
template<class... Args> struct is_container<unordered_set<Args...>> : true_type {};
template<class... Args> struct is_container<unordered_multiset<Args...>> : true_type {};
template<class... Args> struct is_container<map<Args...>> : true_type {};
template<class... Args> struct is_container<multimap<Args...>> : true_type {};
template<class... Args> struct is_container<unordered_map<Args...>> : true_type {};
template<class... Args> struct is_container<unordered_multimap<Args...>> : true_type {};

template<class T, class Enable=void>
struct ProconHash {
    size_t operator()(const T& x) const noexcept {
        return hash<T>{}(x);
    }
};

template<class T>
size_t procon_hash_value(const T& x) noexcept {
    return ProconHash<T>{}(x);
}

size_t procon_hash_combine(size_t h1, size_t h2) noexcept {
    constexpr size_t M = UINT64_C(0xc6a4a7935bd1e995);
    constexpr int    R = 47;

    h2 *= M;
    h2 ^= h2 >> R;
    h2 *= M;

    h1 ^= h2;
    h1 *= M;

    h1 += 0xe6546b64;

    return h1;
}

template<class T1, class T2>
struct ProconHash<pair<T1,T2>> {
    size_t operator()(const pair<T1,T2>& p) const noexcept {
        size_t h1 = procon_hash_value(p.first);
        size_t h2 = procon_hash_value(p.second);
        return procon_hash_combine(h1, h2);
    }
};

template<class... TS>
struct ProconHash<tuple<TS...>> {
    size_t operator()(const tuple<TS...>& t) const noexcept {
        size_t h = 0;
        tuple_enumerate(t, [&h](i64, const auto& e) {
            h = procon_hash_combine(h, procon_hash_value(e));
        });
        return h;
    }
};

template<class C>
struct ProconHash<C,enable_if_t<is_container<C>::value>> {
    size_t operator()(const C& c) const noexcept {
        size_t h = 0;
        for(const auto& e : c)
            h = procon_hash_combine(h, procon_hash_value(e));
        return h;
    }
};

template<class T, class Hash=ProconHash<T>, class Eq=equal_to<T>>
using HashSet = unordered_set<T,Hash,Eq>;
template<class K, class V, class Hash=ProconHash<K>, class Eq=equal_to<K>>
using HashMap = unordered_map<K,V,Hash,Eq>;
template<class T, class Hash=ProconHash<T>, class Eq=equal_to<T>>
using HashMultiset = unordered_multiset<T,Hash,Eq>;
template<class K, class V, class Hash=ProconHash<K>, class Eq=equal_to<K>>
using HashMultimap = unordered_multimap<K,V,Hash,Eq>;

template<class T>
auto vec_make(i64 n, T x) {
    return vector<T>(n, x);
}

template<class T, class... Args, SFINAE(sizeof...(Args) >= 2)>
auto vec_make(i64 n, Args... args) {
    auto inner = vec_make<T>(args...);
    return vector<decltype(inner)>(n, inner);
}

template<class T>
auto vec_reserve(i64 cap) {
    vector<T> res;
    res.reserve(cap);
    return res;
}

template<class T=i64>
auto vec_iota(i64 n, T init={}) {
    vector<i64> res(n);
    ALL(iota, res, init);
    return res;
}

template<class ForwardIt, class BinaryOp>
auto vec_scan(ForwardIt first, ForwardIt last,
              typename iterator_traits<ForwardIt>::value_type init,
              BinaryOp op)
{
    using T = typename iterator_traits<ForwardIt>::value_type;
    auto res = vec_reserve<T>(distance(first,last)+1);
    res.emplace_back(init);
    for(; first != last; ++first) {
        init = op(move(init), *first);
        res.emplace_back(init);
    }
    return res;
}

template<class ForwardIt>
auto vec_cum(ForwardIt first, ForwardIt last) {
    using T = typename iterator_traits<ForwardIt>::value_type;
    return vec_scan(first, last, T{}, plus<>{});
}

template<class T, class Comp, class Cont=vector<T>>
auto priority_queue_make(const Comp& comp, Cont&& cont={}) {
    return priority_queue<T,remove_reference_t<Cont>,Comp>(comp, forward<Cont>(cont));
}

template<class T, class Comp>
auto priority_queue_reserve(const Comp& comp, i64 cap) {
    return priority_queue<T,vector<T>,Comp>(comp, vec_reserve<T>(cap));
}

template<class T, size_t N, size_t... NS>
struct ArrayType {
    using type = array<class ArrayType<T,NS...>::type,N>;
};

template<class T, size_t N>
struct ArrayType<T,N> {
    using type = array<T,N>;
};

template<class T, size_t... NS>
using Array = typename ArrayType<T,NS...>::type;

template<class T, size_t N>
T& array_at(Array<T,N>& ary, i64 i) {
    return ary[i];
}

template<class T, size_t N, size_t... NS, class... Args>
T& array_at(Array<T,N,NS...>& ary, i64 i, Args... args) {
    return array_at<T,NS...>(ary[i], args...);
}

template<class T, size_t N>
const T& array_at(const Array<T,N>& ary, i64 i) {
    return ary[i];
}

template<class T, size_t N, size_t... NS, class... Args>
const T& array_at(const Array<T,N,NS...>& ary, i64 i, Args... args) {
    return array_at<T,NS...>(ary[i], args...);
}

template<class T, class C>
T POP(stack<T,C>& stk) {
    T x = stk.top(); stk.pop();
    return x;
}

template<class T, class C>
T POP(queue<T,C>& que) {
    T x = que.front(); que.pop();
    return x;
}

template<class T, class C, class Comp>
T POP(priority_queue<T,C,Comp>& que) {
    T x = que.top(); que.pop();
    return x;
}
// }}}

// input {{{
template<class T, class Enable=void>
struct Scan {
    static T scan(istream& in) {
        T res;
        in >> res;
        return res;
    }
};

template<class T, class Enable=void>
struct Scan1;

template<class T>
struct Scan1<T,enable_if_t<is_integral<T>::value && !is_same<T,bool>::value>> {
    static T scan1(istream& in) {
        return Scan<T>::scan(in) - 1;
    }
};

template<class T1, class T2>
struct Scan<pair<T1,T2>> {
    static pair<T1,T2> scan(istream& in) {
        T1 x = Scan<T1>::scan(in);
        T2 y = Scan<T2>::scan(in);
        return {x,y};
    }
};

template<class T1, class T2>
struct Scan1<pair<T1,T2>> {
    static pair<T1,T2> scan1(istream& in) {
        T1 x = Scan1<T1>::scan1(in);
        T2 y = Scan1<T2>::scan1(in);
        return {x,y};
    }
};

template<class T>
tuple<T> tuple_scan_impl(istream& in) {
    return make_tuple(Scan<T>::scan(in));
}

template<class T, class... TS, SFINAE(sizeof...(TS) > 0)>
tuple<T,TS...> tuple_scan_impl(istream& in) {
    auto head = make_tuple(Scan<T>::scan(in));
    return tuple_cat(head, tuple_scan_impl<TS...>(in));
}

template<class... TS>
struct Scan<tuple<TS...>> {
    static tuple<TS...> scan(istream& in) {
        return tuple_scan_impl<TS...>(in);
    }
};

template<class T>
tuple<T> tuple_scan1_impl(istream& in) {
    return make_tuple(Scan1<T>::scan1(in));
}

template<class T, class... TS, SFINAE(sizeof...(TS) > 0)>
tuple<T,TS...> tuple_scan1_impl(istream& in) {
    auto head = make_tuple(Scan1<T>::scan1(in));
    return tuple_cat(head, tuple_scan1_impl<TS...>(in));
}

template<class... TS>
struct Scan1<tuple<TS...>> {
    static tuple<TS...> scan1(istream& in) {
        return tuple_scan1_impl<TS...>(in);
    }
};

template<class T=i64>
T RD() {
    return Scan<T>::scan(cin);
}

template<class T=i64>
T RD1() {
    return Scan1<T>::scan1(cin);
}

template<class T=i64>
auto RD_VEC(i64 n) {
    auto res = vec_reserve<T>(n);
    LOOP(n) {
        res.emplace_back(RD<T>());
    }
    return res;
}

template<class T=i64>
auto RD1_VEC(i64 n) {
    auto res = vec_reserve<T>(n);
    LOOP(n) {
        res.emplace_back(RD1<T>());
    }
    return res;
}

template<class T=i64>
auto RD_VEC2(i64 h, i64 w) {
    auto res = vec_reserve<vector<T>>(h);
    LOOP(h) {
        res.emplace_back(RD_VEC<T>(w));
    }
    return res;
}

template<class T=i64>
auto RD1_VEC2(i64 h, i64 w) {
    auto res = vec_reserve<vector<T>>(h);
    LOOP(h) {
        res.emplace_back(RD1_VEC<T>(w));
    }
    return res;
}
// }}}

// output {{{
template<class T, class Enable=void>
struct Fmt {
    static void fmt(ostream& out, const T& x) { out << x; }
};

template<class T>
void fmt_write(ostream& out, const T& x) {
    Fmt<T>::fmt(out, x);
}

template<class T>
string FMT_STR(const T& x) {
    ostringstream out;
    fmt_write(out, x);
    return out.str();
}

template<class... TS>
struct Fmt<tuple<TS...>> {
    static void fmt(ostream& out, const tuple<TS...>& t) {
        tuple_enumerate(t, [&out](i64 i, const auto& e) {
            if(i != 0) out << ' ';
            fmt_write(out, e);
        });
    }
};

template<class T1, class T2>
struct Fmt<pair<T1,T2>> {
    static void fmt(ostream& out, const pair<T1,T2>& p) {
        return fmt_write(out, make_tuple(p.first,p.second));
    }
};

template<class C>
struct Fmt<C,enable_if_t<is_container<C>::value>> {
    static void fmt(ostream& out, const C& c) {
        for(auto it = begin(c); it != end(c); ++it) {
            if(it != begin(c)) out << ' ';
            fmt_write(out, *it);
        }
    }
};

void PRINT() {}

template<class T, class... TS>
void PRINT(const T& x, const TS&... args) {
    fmt_write(cout, x);
    if(sizeof...(args) > 0) {
        cout << ' ';
        PRINT(args...);
    }
}

template<class... TS>
void PRINTLN(const TS&... args) {
    PRINT(args...);
    cout << '\n';
}
// }}}

// debug {{{
template<class T, class Enable=void>
struct Dbg {
    static void dbg(ostream& out, const T& x) { out << x; }
};

template<class T>
void dbg_write(ostream& out, const T& x) {
    Dbg<T>::dbg(out, x);
}

template<class T>
string DBG_STR(const T& x) {
    ostringstream out;
    dbg_write(out, x);
    return out.str();
}

template<>
struct Dbg<i64> {
    static void dbg(ostream& out, i64 x) {
        if(x == INF)
            out << "INF";
        else if(x == -INF)
            out << "-INF";
        else
            out << x;
    }
};

template<>
struct Dbg<Real> {
    static void dbg(ostream& out, Real x) {
        if(EQ_EXACT(x, FINF))
            out << "FINF";
        else if(EQ_EXACT(x, -FINF))
            out << "-FINF";
        else
            out << x;
    }
};

template<class T, size_t N>
struct Dbg<T[N]> {
    static void dbg(ostream& out, const T (&ary)[N]) {
        out << "[";
        REP(i, N) {
            if(i != 0) out << ",";
            dbg_write(out, ary[i]);
        }
        out << "]";
    }
};

template<size_t N>
struct Dbg<char[N]> {
    static void dbg(ostream& out, const char (&s)[N]) {
        out << s;
    }
};

template<class T>
void DBG_IMPL(i64 line, const char* expr, const T& value) {
    cerr << "[L " << line << "]: ";
    cerr << expr << " = ";
    dbg_write(cerr, value);
    cerr << "\n";
}

void DBG_IMPL_HELPER() {}

template<class T, class... TS>
void DBG_IMPL_HELPER(const T& x, const TS&... args) {
    dbg_write(cerr, x);
    if(sizeof...(args) > 0) {
        cerr << ",";
        DBG_IMPL_HELPER(args...);
    }
}

template<class... TS>
void DBG_IMPL(i64 line, const char* expr, const TS&... value) {
    cerr << "[L " << line << "]: ";
    cerr << "(" << expr << ") = (";
    DBG_IMPL_HELPER(value...);
    cerr << ")\n";
}

template<size_t N, class T, SFINAE(rank<T>::value == 0)>
void DBG_DP_IMPL_HELPER(ostream& out, const T& x, const array<i64,N>&, const array<i64,N>&) {
    dbg_write(out, x);
}

template<size_t N, class T, SFINAE(rank<T>::value > 0)>
void DBG_DP_IMPL_HELPER(ostream& out, const T& x, const array<i64,N>& sizes, const array<i64,N>& offs) {
    i64 k   = N - rank<T>::value;
    i64 off = offs[k];
    i64 siz = sizes[k];
    if(siz == 0) siz = extent<T>::value - off;

    out << "[";
    FOR(i, off, off+siz) {
        if(i != off) out << ",";
        DBG_DP_IMPL_HELPER(out, x[i], sizes, offs);
    }
    out << "]";
}

template<class T, SFINAE(rank<T>::value > 0)>
void DBG_DP_IMPL(i64 line, const char* expr, const T& dp,
                 const array<i64,rank<T>::value>& sizes={},
                 const array<i64,rank<T>::value>& offs={})
{
    cerr << "[L " << line << "]: ";
    cerr << expr << " = ";
    DBG_DP_IMPL_HELPER<rank<T>::value>(cerr, dp, sizes, offs);
    cerr << "\n";
}

template<class T>
void DBG_GRID_IMPL(i64 line, const char* expr, const vector<T>& grid) {
    cerr << "[L " << line << "]: ";
    cerr << expr << ":\n";
    for(const auto& row : grid) {
        dbg_write(cerr, row);
        cerr << "\n";
    }
    cerr << "\n";
}

#ifdef PROCON_LOCAL
    #define DBG(args...) DBG_IMPL(__LINE__, CPP_STR_I(args), args)
    #define DBG_DP(args...) DBG_DP_IMPL(__LINE__, CPP_STR_I(args), args)
    #define DBG_GRID(args...) DBG_GRID_IMPL(__LINE__, CPP_STR_I(args), args)
#else
    #define DBG(args...)
    #define DBG_DP(args...)
    #define DBG_GRID(args...)
#endif
// }}}

// init {{{
struct ProconInit {
    ProconInit() {
        cin.tie(nullptr);
        ios::sync_with_stdio(false);
        cin.exceptions(ios::failbit | ios::badbit);
        cout << fixed << setprecision(COUT_PREC);
#ifdef PROCON_LOCAL
        cerr << fixed << setprecision(2);
#endif
        if(COUT_AUTOFLUSH)
            cout << unitbuf;
    }
} PROCON_INIT;
// }}}

// }}}

//--------------------------------------------------------------------

constexpr int N = 1'000'000;
//constexpr int N = 10;

vector<char> cs;          // cs[v]: ノード v の最後の文字
vector<int> ls;           // ls[v]: ノード v の文字列長 (ls[0]==0)
vector<vector<int>> pss;  // pss[k][v]: ノード v の 2^k 個上
vector<int> vs;           // vs[i]: i 回目の操作終了時のノード (vs[0]==0)

int n_v;
int n_op;

void Init() {
    cs.assign(N+1, '$');
    ls.assign(N+1, 0);
    pss.assign(20,vector<int>(N+1,-1));
    vs.assign(N+1, 0);

    n_v  = 1;
    n_op = 0;
}

void TypeLetter(char L) {
    //DBG(cs);
    //DBG(ls);
    //DBG(pss);
    //DBG(vs);
    //DBG(n_v);
    //DBG(n_op);

    // 前回のノードに新たな子ノードが加わる
    int p = vs[n_op++];
    int v = n_v++;
    cs[v] = L;
    ls[v] = ls[p] + 1;
    pss[0][v] = p;
    FOR(k, 1, 20) {
        int w = pss[k-1][pss[k-1][v]];
        if(w == -1) break;
        pss[k][v] = w;
    }

    vs[n_op] = v;
}

void UndoCommands(int U) {
    //DBG(cs);
    //DBG(ls);
    //DBG(pss);
    //DBG(vs);
    //DBG(n_v);
    //DBG(n_op);

    // 既存のノードへ戻る
    int v = vs[n_op-U];
    ++n_op;

    vs[n_op] = v;
}

char GetLetter(int P) {
    //DBG(cs);
    //DBG(ls);
    //DBG(pss);
    //DBG(vs);
    //DBG(n_v);
    //DBG(n_op);

    int v = vs[n_op];
    ASSERT(v != 0);

    int n_back = ls[v] - (P+1);
    REP(k, 20) {
        if(n_back & BIT_I(k)) {
            v = pss[k][v];
        }
    }

    ASSERT(v != 0);
    return cs[v];
}

#ifdef PROCON_LOCAL
signed main() {
    Init();
    TypeLetter('a');
    TypeLetter('b');
    ASSERT(GetLetter(1) == 'b');
    TypeLetter('d');
    UndoCommands(2);
    UndoCommands(1);
    ASSERT(GetLetter(2) == 'd');
    TypeLetter('e');
    UndoCommands(1);
    UndoCommands(5);
    TypeLetter('c');
    ASSERT(GetLetter(2) == 'c');
    UndoCommands(2);
    ASSERT(GetLetter(2) == 'd');

    EXIT();
}
#endif
# Verdict Execution time Memory Grader output
1 Correct 63 ms 87472 KB Output is correct
2 Correct 62 ms 87544 KB Output is correct
3 Correct 71 ms 87600 KB Output is correct
4 Correct 61 ms 87544 KB Output is correct
5 Correct 65 ms 87472 KB Output is correct
6 Correct 63 ms 87472 KB Output is correct
7 Correct 64 ms 87472 KB Output is correct
8 Correct 64 ms 87472 KB Output is correct
9 Correct 64 ms 87544 KB Output is correct
10 Correct 64 ms 87600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 62 ms 87472 KB Output is correct
2 Correct 63 ms 87544 KB Output is correct
3 Correct 61 ms 87472 KB Output is correct
4 Correct 67 ms 87672 KB Output is correct
5 Correct 61 ms 87544 KB Output is correct
6 Correct 60 ms 87476 KB Output is correct
7 Correct 62 ms 87472 KB Output is correct
8 Correct 62 ms 87544 KB Output is correct
9 Correct 61 ms 87472 KB Output is correct
10 Correct 61 ms 87472 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 62 ms 87472 KB Output is correct
2 Correct 64 ms 87472 KB Output is correct
3 Correct 64 ms 87472 KB Output is correct
4 Correct 63 ms 87472 KB Output is correct
5 Correct 63 ms 87480 KB Output is correct
6 Correct 63 ms 87600 KB Output is correct
7 Correct 64 ms 87600 KB Output is correct
8 Correct 62 ms 87600 KB Output is correct
9 Correct 61 ms 87472 KB Output is correct
10 Correct 65 ms 87472 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 310 ms 91524 KB Output is correct
2 Correct 348 ms 91568 KB Output is correct
3 Correct 343 ms 92696 KB Output is correct
4 Correct 369 ms 94020 KB Output is correct
5 Correct 325 ms 92720 KB Output is correct
6 Correct 271 ms 91824 KB Output is correct
7 Correct 343 ms 93744 KB Output is correct
8 Correct 338 ms 93360 KB Output is correct
9 Correct 352 ms 92208 KB Output is correct
10 Correct 267 ms 91804 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 386 ms 92464 KB Output is correct
2 Correct 456 ms 93748 KB Output is correct
3 Correct 352 ms 93236 KB Output is correct
4 Correct 409 ms 95152 KB Output is correct
5 Correct 290 ms 92464 KB Output is correct
6 Correct 301 ms 92336 KB Output is correct
7 Correct 317 ms 92336 KB Output is correct
8 Correct 471 ms 94000 KB Output is correct
9 Correct 475 ms 93956 KB Output is correct
10 Correct 272 ms 91696 KB Output is correct