Submission #19018

#TimeUsernameProblemLanguageResultExecution timeMemory
19018tncks0121카드 (kriii4_Z)C++14
0 / 100
6 ms2424 KiB
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <memory.h> #include <math.h> #include <assert.h> #include <stack> #include <queue> #include <map> #include <set> #include <algorithm> #include <string> #include <functional> #include <vector> #include <deque> #include <utility> #include <bitset> #include <limits.h> #include <time.h> #include <functional> #include <numeric> #include <iostream> #include <unordered_map> using namespace std; typedef long long ll; typedef unsigned long long llu; typedef double lf; typedef unsigned int uint; typedef long double llf; typedef pair<int, int> pii; typedef pair<ll, int> pli; #define debug(format, ...) printf(format, __VA_ARGS__); const ll MOD = (ll)1e9 + 7; ll modpow (ll a, ll b) { a %= MOD; ll ret = 1; while(b > 0) { if(b & 1) ret = (ret * a) % MOD; a = (a * a) % MOD; b >>= 1; } return ret; } struct mint { ll val; mint(ll val = 0): val((val % MOD + MOD) % MOD) { } mint operator+(mint p) { return val + p.val; } mint operator-(mint p) { return val - p.val; } mint operator*(mint p) { return val * p.val; } mint operator/(mint p) { return val * modpow(p.val, MOD-2); } }; int L; const int N_ = 3050, L_ = 3050; int D[N_]; int freq[N_]; mint invfac[L_], inv[L_], fac[L_]; #define REP(i, a, b) for (int i = (a), _end_ = (b); i < _end_; ++i) #define mp make_pair #define x first #define y second #define pb push_back #define SZ(x) (int((x).size())) #define ALL(x) (x).begin(), (x).end() template<typename T> inline bool chkmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; } template<typename T> inline bool chkmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; } typedef long long LL; const int oo = 0x3f3f3f3f; const int Mod = 1e9 + 7; const int maxk = 3050, max0 = 4096, max1 = 30; inline int fpm(LL b, int e, int m) { b %= m; LL t = 1; for ( ; e; e >>= 1, (b *= b) %= m) if (e & 1) (t *= b) %= m; return t; } int ans; int MXN; struct comp { double x, y; comp(): x(0), y(0) { } comp(const double &_x, const double &_y): x(_x), y(_y) { } }; inline comp operator+(const comp &a, const comp &b) { return comp(a.x + b.x, a.y + b.y); } inline comp operator-(const comp &a, const comp &b) { return comp(a.x - b.x, a.y - b.y); } inline comp operator*(const comp &a, const comp &b) { return comp(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); } inline comp conj(const comp &a) { return comp(a.x, -a.y); } const double PI = acos(-1); comp w[max0 + 5]; int bitrev[max0 + 5]; int LLLL; void fft(comp *a, const int &n) { REP(i, 0, n) if (i < bitrev[i]) swap(a[i], a[bitrev[i]]); for (int i = 2, lyc = n >> 1; i <= n; i <<= 1, lyc >>= 1) for (int j = 0; j < n; j += i) { comp *l = a + j, *r = a + j + (i >> 1), *p = w; REP(k, 0, i >> 1) { comp tmp = *r * *p; *r = *l - tmp, *l = *l + tmp; ++l, ++r, p += lyc; } } } inline void fft_prepare() { REP(i, 0, MXN) bitrev[i] = bitrev[i >> 1] >> 1 | ((i & 1) << (LLLL - 1)); REP(i, 0, MXN) w[i] = comp(cos(2 * PI * i / MXN), sin(2 * PI * i / MXN)); } inline void conv(int *x, int *y, int *z) { REP(i, 0, L + 1) (x[i] += Mod) %= Mod, (y[i] += Mod) %= Mod; static comp a[max0 + 5], b[max0 + 5]; static comp dfta[max0 + 5], dftb[max0 + 5], dftc[max0 + 5], dftd[max0 + 5]; REP(i, 0, L + 1) a[i] = comp(x[i] & 32767, x[i] >> 15); REP(i, 0, L + 1) b[i] = comp(y[i] & 32767, y[i] >> 15); REP(i, L + 1, MXN) a[i] = b[i] = comp(0, 0); fft(a, MXN), fft(b, MXN); REP(i, 0, MXN) { int j = (MXN - i) & (MXN - 1); static comp da, db, dc, dd; da = (a[i] + conj(a[j])) * comp(0.5, 0); db = (a[i] - conj(a[j])) * comp(0, -0.5); dc = (b[i] + conj(b[j])) * comp(0.5, 0); dd = (b[i] - conj(b[j])) * comp(0, -0.5); dfta[j] = da * dc; dftb[j] = da * dd; dftc[j] = db * dc; dftd[j] = db * dd; } REP(i, 0, MXN) a[i] = dfta[i] + dftb[i] * comp(0, 1); REP(i, 0, MXN) b[i] = dftc[i] + dftd[i] * comp(0, 1); fft(a, MXN), fft(b, MXN); REP(i, 0, L + 1) { int da = (LL)(a[i].x / MXN + 0.5) % Mod; int db = (LL)(a[i].y / MXN + 0.5) % Mod; int dc = (LL)(b[i].x / MXN + 0.5) % Mod; int dd = (LL)(b[i].y / MXN + 0.5) % Mod; z[i] = (da + ((LL)(db + dc) << 15) + ((LL)dd << 30)) % Mod; } } static int tmp[maxk + 5], a[maxk + 5], b[maxk + 5]; int main() { int N; assert(scanf("%d%d", &N, &L) == 2); MXN = (L + 1) << 1; LLLL = 0; while ((1 << LLLL) < MXN) ++LLLL; MXN = 1 << LLLL; fft_prepare(); assert(1 <= N && N <= 3000); assert(1 <= L && L <= 3000); for(int i = 1; i <= N; i++) { assert(scanf("%d", D+i) == 1); assert(0 <= D[i] && D[i] <= 10); ++freq[D[i]]; } // precalc section { inv[1] = 1; for(int i = 2; i < L_; i++) { inv[i] = inv[MOD % i] * -(MOD / i); } invfac[0] = fac[0] = 1; for(int i = 1; i <= L; i++) { fac[i] = fac[i-1] * i; invfac[i] = invfac[i-1] * inv[i]; } } vector<mint> tb(L+1, 0); tb[0] = 1; for(int d = 0; d <= 10; d++) if(freq[d] > 0) { vector<mint> base(L+1, 0); for(int j = d; j <= L; j++) base[j] = invfac[j]; auto multiply = [](vector<mint> &p, vector<mint> &q) { for(int i = 0; i <= L; i++) a[i] = p[i].val, b[i] = q[i].val; conv(a, b, tmp); vector<mint> ret(L+1); for(int i = 0; i <= L; i++) ret[i] = tmp[i]; return ret; }; vector<mint> coef, cur(L+1, 0); for(int j = d; j <= L; j++) cur[j] = invfac[j]; for(int k = 0; (1<<k) <= freq[d]; k++) { if((freq[d] >> k) & 1) { if(coef.empty()) coef = cur; else coef = multiply(coef, cur); } cur = multiply(cur, cur); } tb = multiply(coef, tb); } mint ans = tb[L] * fac[L] / modpow(N, L); printf("%lld\n", ans.val); return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...