Submission #185625

# Submission time Handle Problem Language Result Execution time Memory
185625 2020-01-12T02:21:15 Z anonymous Ljetopica (COI19_ljetopica) C++14
100 / 100
121 ms 63372 KB
#include<iostream>
#define MAXN 1005
#define MOD 1000000007
#define LL long long
using namespace std;
int N, K;
char seq[MAXN], A[MAXN], B[MAXN];
LL pow2[MAXN];
LL dp[MAXN][MAXN][2][2], dp2[MAXN][MAXN][2][2]; //num, contribution
//n,k, invert, t
LL f(int n, int k, int i,  int t) {
    if (k < 0) {return(0);}
    return(dp[n][k][i][t]);
}

LL f2(int n, int k, int i, int t) {
    if (k < 0) {return(0);}
    return(dp2[n][k][i][t]);
}

int cost(int i, char At, char Do) {
    if (i) {return(At == Do);}
    return(At != Do);
}

LL slv(char* V) {
    dp[0][0][0][0]=dp[0][0][0][1]=dp[0][0][1][0]=dp[0][0][1][1]=1;
    for (int n=1; n<N; n++) {
        for (int k=0; k<=K; k++) {
          for (int i=0; i<=1; i++) {
            char L='L', R='R'; //R is the actual way to go right
            //if (i) {swap(L,R);}
            for (int t=0; t<=1; t++) {
                if (t == 0) {
                    //not tight
                    dp[n][k][i][t]=(f(n-1, k-1, not(i),  0)+f(n-1, k, i, 0))%MOD;
                    dp2[n][k][i][t]=(f2(n-1, k-1, not(i), 0)+f2(n-1, k, i, 0)+f(n-1, k-cost(i, seq[n], R), (seq[n] != R),  0)*pow2[n-1])%MOD;

                } else {
                    dp[n][k][i][t]=f(n-1, k-cost(i, seq[n], L), (seq[n] != L), V[n] == '0'); //choose 0
                    dp2[n][k][i][t]=f2(n-1, k-cost(i, seq[n], L), (seq[n] != L),  V[n] == '0'); //choose 0
                    //printf("%d %d %d %d %lld %lld %d\n", n,k,i,t, f(n-1, k-cost(i, seq[n], L), (seq[n] != L), V[n] == '0'), f(n,k, i, t), cost(i, seq[n], L));
                    if (V[n] == '1') {
                        dp[n][k][i][t]=(dp[n][k][i][t] + f(n-1, k-cost(i, seq[n], R),(seq[n] != R), 1))%MOD; //choose 1 so increase hamming weight if seq[n] = 'L'
                        dp2[n][k][i][t]=(dp2[n][k][i][t] + f2(n-1, k-cost(i, seq[n], R),  (seq[n] != R), 1) + f(n-1, k-cost(i, seq[n], R),  (seq[n] != R), 1)*pow2[n-1])%MOD;
                    }
                }
            }
          }
        }
    }
    //printf("%lld %lld\n", dp[N-1][K][0][1], dp[N-1][K][1][1]);
    return((dp2[N-1][K][0][1]+dp2[N-1][K][1][1] + (dp[N-1][K][0][1]+dp[N-1][K][1][1])*pow2[N-1])%MOD);
}

void initpow() {
    pow2[0]=1;
    for (int i=1; i<=N; i++) {
        pow2[i]=(2*pow2[i-1])%MOD;
    }
}
int main() {
    //freopen("ljin.txt","r",stdin);
    scanf("%d %d", &N, &K);
    for (int i=1; i<N; i++) {
        scanf("\n%c", &seq[N-i]);
    }
    for (int i=0; i<N; i++) {
        scanf("\n%c", &A[N-i]);
    }
    for (int i=0; i<N; i++) {
        scanf("\n%c", &B[N-i]);
    }
    initpow();

    LL ans=(slv(B)-slv(A)+MOD)%MOD;
    for (int i=1; i<=N; i++) {
        if (A[i] == '1') {
            ans=(ans+pow2[i-1])%MOD;
        }
    }
    printf("%lld", ans);
}

Compilation message

ljetopica.cpp: In function 'int main()':
ljetopica.cpp:64:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf("%d %d", &N, &K);
     ~~~~~^~~~~~~~~~~~~~~~~
ljetopica.cpp:66:14: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
         scanf("\n%c", &seq[N-i]);
         ~~~~~^~~~~~~~~~~~~~~~~~~
ljetopica.cpp:69:14: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
         scanf("\n%c", &A[N-i]);
         ~~~~~^~~~~~~~~~~~~~~~~
ljetopica.cpp:72:14: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
         scanf("\n%c", &B[N-i]);
         ~~~~~^~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 9 ms 8440 KB Output is correct
2 Correct 8 ms 8056 KB Output is correct
3 Correct 10 ms 7676 KB Output is correct
4 Correct 8 ms 7160 KB Output is correct
5 Correct 7 ms 6776 KB Output is correct
6 Correct 8 ms 6396 KB Output is correct
7 Correct 8 ms 6008 KB Output is correct
8 Correct 7 ms 5624 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 504 KB Output is correct
2 Correct 3 ms 504 KB Output is correct
3 Correct 2 ms 504 KB Output is correct
4 Correct 2 ms 504 KB Output is correct
5 Correct 3 ms 504 KB Output is correct
6 Correct 2 ms 504 KB Output is correct
7 Correct 2 ms 504 KB Output is correct
8 Correct 2 ms 504 KB Output is correct
9 Correct 2 ms 504 KB Output is correct
10 Correct 3 ms 504 KB Output is correct
11 Correct 2 ms 504 KB Output is correct
12 Correct 3 ms 504 KB Output is correct
13 Correct 2 ms 504 KB Output is correct
14 Correct 2 ms 504 KB Output is correct
15 Correct 2 ms 508 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 74 ms 44296 KB Output is correct
2 Correct 54 ms 33168 KB Output is correct
3 Correct 60 ms 36700 KB Output is correct
4 Correct 111 ms 63184 KB Output is correct
5 Correct 51 ms 31824 KB Output is correct
6 Correct 114 ms 63372 KB Output is correct
7 Correct 33 ms 22648 KB Output is correct
8 Correct 60 ms 36216 KB Output is correct
9 Correct 15 ms 9592 KB Output is correct
10 Correct 55 ms 33652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 8440 KB Output is correct
2 Correct 8 ms 8056 KB Output is correct
3 Correct 10 ms 7676 KB Output is correct
4 Correct 8 ms 7160 KB Output is correct
5 Correct 7 ms 6776 KB Output is correct
6 Correct 8 ms 6396 KB Output is correct
7 Correct 8 ms 6008 KB Output is correct
8 Correct 7 ms 5624 KB Output is correct
9 Correct 2 ms 504 KB Output is correct
10 Correct 3 ms 504 KB Output is correct
11 Correct 2 ms 504 KB Output is correct
12 Correct 2 ms 504 KB Output is correct
13 Correct 3 ms 504 KB Output is correct
14 Correct 2 ms 504 KB Output is correct
15 Correct 2 ms 504 KB Output is correct
16 Correct 2 ms 504 KB Output is correct
17 Correct 2 ms 504 KB Output is correct
18 Correct 3 ms 504 KB Output is correct
19 Correct 2 ms 504 KB Output is correct
20 Correct 3 ms 504 KB Output is correct
21 Correct 2 ms 504 KB Output is correct
22 Correct 2 ms 504 KB Output is correct
23 Correct 2 ms 508 KB Output is correct
24 Correct 74 ms 44296 KB Output is correct
25 Correct 54 ms 33168 KB Output is correct
26 Correct 60 ms 36700 KB Output is correct
27 Correct 111 ms 63184 KB Output is correct
28 Correct 51 ms 31824 KB Output is correct
29 Correct 114 ms 63372 KB Output is correct
30 Correct 33 ms 22648 KB Output is correct
31 Correct 60 ms 36216 KB Output is correct
32 Correct 15 ms 9592 KB Output is correct
33 Correct 55 ms 33652 KB Output is correct
34 Correct 88 ms 52448 KB Output is correct
35 Correct 36 ms 22956 KB Output is correct
36 Correct 54 ms 33040 KB Output is correct
37 Correct 121 ms 60124 KB Output is correct
38 Correct 22 ms 14764 KB Output is correct
39 Correct 97 ms 56952 KB Output is correct
40 Correct 19 ms 13692 KB Output is correct
41 Correct 64 ms 40312 KB Output is correct
42 Correct 83 ms 49784 KB Output is correct
43 Correct 84 ms 49692 KB Output is correct
44 Correct 97 ms 56696 KB Output is correct
45 Correct 33 ms 21624 KB Output is correct
46 Correct 78 ms 45816 KB Output is correct
47 Correct 89 ms 48268 KB Output is correct
48 Correct 54 ms 30960 KB Output is correct
49 Correct 11 ms 9208 KB Output is correct
50 Correct 96 ms 54904 KB Output is correct
51 Correct 46 ms 28796 KB Output is correct
52 Correct 50 ms 30456 KB Output is correct
53 Correct 109 ms 63224 KB Output is correct
54 Correct 34 ms 23420 KB Output is correct
55 Correct 90 ms 53752 KB Output is correct
56 Correct 102 ms 60024 KB Output is correct
57 Correct 18 ms 13560 KB Output is correct
58 Correct 81 ms 48504 KB Output is correct