/*
Author: Nguyen Tan Bao
Status:
Idea:
*/
#include <bits/stdc++.h>
#define FI first
#define SE second
#define EPS 1e-9
#define ALL(a) a.begin(),a.end()
#define SZ(a) int((a).size())
#define MS(s, n) memset(s, n, sizeof(s))
#define FOR(i,a,b) for (int i = (a); i <= (b); i++)
#define FORE(i,a,b) for (int i = (a); i >= (b); i--)
#define FORALL(it, a) for (__typeof((a).begin()) it = (a).begin(); it != (a).end(); it++)
//__builtin_ffs(x) return 1 + index of least significant 1-bit of x
//__builtin_clz(x) return number of leading zeros of x
//__builtin_ctz(x) return number of trailing zeros of x
using namespace std;
using ll = long long;
using ld = double;
typedef pair<int, int> II;
typedef pair<int, II> III;
typedef complex<ld> cd;
typedef vector<cd> vcd;
const ll MODBASE = 1000000007LL;
const int MAXN = 110;
const int MAXM = 1000;
const int MAXK = 16;
const int MAXQ = 200010;
const int MAX = 1000000000;
const int oo = 0x3c3c3c3c;
struct Edge {
int from, to, cap, flow, index;
Edge(int from, int to, int cap, int flow, int index) : from(from), to(to), cap(cap), flow(flow), index(index) {}
};
int mustWalk[MAXN][MAXN];
struct Dinic {
int N, flow, t;
vector<int> d, Dfs, ptr;
vector<vector<Edge> > G;
queue<int> q;
Dinic(int N) {
this->N = N;
G.resize(N);
ptr.resize(N);
d.resize(N);
Dfs.resize(N);
flow = t = 0;
}
void addEdge(int u, int v, int gt, bool rev = false) {
// cout << u << ' ' << v << ' ' << gt << endl;
G[u].push_back(Edge(u, v, gt, 0, G[v].size()));
if (u == v) G[u].back().index++;
if (rev) G[v].push_back(Edge(v, u, gt, 0, G[u].size() - 1));
else G[v].push_back(Edge(v, u, 0, 0, G[u].size() - 1));
}
bool bfs(int S, int T) {
FOR(i,0,N-1) d[i] = 0;
while (!q.empty()) q.pop();
q.push(S); d[S]=1;
while (!q.empty()) {
int u = q.front();
q.pop();
if (u == T) return true;
FOR(i,0,SZ(G[u])-1) {
int v = G[u][i].to;
if (!d[v] && G[u][i].cap - G[u][i].flow > 0) {
q.push(v);
d[v] = d[u] + 1;
}
}
}
return false;
}
int visit(int u, int Min, int T) {
if (u == T) return Min;
if (Dfs[u]!=t) Dfs[u]=t;
else return 0;
for (; ptr[u] < (int) G[u].size(); ++ptr[u]) {
int v = G[u][ptr[u]].to;
if (G[u][ptr[u]].cap - G[u][ptr[u]].flow > 0)
if (Dfs[v] != t && d[v] == d[u]+1)
if (int x = visit(v, min(Min, G[u][ptr[u]].cap - G[u][ptr[u]].flow), T)) {
G[u][ptr[u]].flow += x;
G[v][G[u][ptr[u]].index].flow -= x;
return x;
}
}
return 0;
}
void getFlow(int S, int T) {
while (bfs(S, T)) {
FOR(i,0,N-1) ptr[i] = 0;
while (1) {
t++;
int x = visit(S, oo, T);
if (!x) break;
flow += x;
}
}
}
void printResult(int n, int k) {
FOR(i,1,n) {
FOR(j,0,SZ(G[i])-1) {
if (G[i][j].flow == 1) {
int busLine = G[i][j].to - n;
cout << mustWalk[i][busLine] << "\n";
break;
}
}
}
}
};
int n, m, c, k;
vector<int> line[MAXN];
vector<II> student, stop;
int dist(II a, II b) {
return (a.FI - b.FI) * (a.FI - b.FI) + (a.SE - b.SE) * (a.SE - b.SE);
}
bool check(int limit) {
Dinic dinic(1+n+k+1);
FOR(i,1,n) dinic.addEdge(0, i, 1);
FOR(i,n+1,n+k) dinic.addEdge(i, n+k+1, c);
FOR(i,1,n) {
FOR(j,1,k) {
int Min = 1e9;
FOR(p,0,SZ(line[j])-1) Min = min(Min, dist(student[i-1], stop[line[j][p]-1]));
if (Min <= limit) dinic.addEdge(i, n+j, 1);
}
}
dinic.getFlow(0, n+k+1);
return dinic.flow == n;
}
void printResult(int limit) {
cout << limit << "\n";
Dinic dinic(1+n+k+1);
FOR(i,1,n) dinic.addEdge(0, i, 1);
FOR(i,n+1,n+k) dinic.addEdge(i, n+k+1, c);
FOR(i,1,n) {
FOR(j,1,k) {
int Min = 1e9;
int pos = 0;
FOR(p,0,SZ(line[j])-1) {
int distance = dist(student[i-1], stop[line[j][p]-1]);
if (distance < Min) {
Min = distance;
pos = line[j][p];
}
}
if (Min <= limit) {
dinic.addEdge(i, n+j, 1);
mustWalk[i][j] = pos;
}
}
}
dinic.getFlow(0, n+k+1);
dinic.printResult(n, k);
}
int main() {
ios::sync_with_stdio(0);
cin.tie(nullptr);
cin >> n >> m >> c >> k;
FOR(i,1,n) {
II p;
cin >> p.FI >> p.SE;
student.emplace_back(p);
}
FOR(i,1,m) {
II p;
cin >> p.FI >> p.SE;
stop.emplace_back(p);
}
FOR(i,1,k) {
int p, x;
cin >> p;
while (p--) {
cin >> x;
line[i].emplace_back(x);
}
}
int dau = 0, cuoi = 10000000, mid;
while (dau <= cuoi) {
mid = (dau + cuoi) >> 1;
if (check(mid)) cuoi = mid-1;
else dau = mid+1;
}
if (dau > 10000000) {
cout << -1;
return 0;
}
printResult(dau);
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
24 ms |
808 KB |
Output is correct |
2 |
Correct |
6 ms |
540 KB |
Output is correct |
3 |
Correct |
13 ms |
648 KB |
Output is correct |
4 |
Correct |
13 ms |
856 KB |
Output is correct |
5 |
Correct |
12 ms |
828 KB |
Output is correct |
6 |
Correct |
16 ms |
740 KB |
Output is correct |
7 |
Correct |
6 ms |
504 KB |
Output is correct |
8 |
Correct |
5 ms |
504 KB |
Output is correct |
9 |
Correct |
10 ms |
680 KB |
Output is correct |
10 |
Correct |
5 ms |
504 KB |
Output is correct |