Submission #164517

# Submission time Handle Problem Language Result Execution time Memory
164517 2019-11-21T08:44:43 Z balbit Dango Maker (JOI18_dango_maker) C++14
33 / 100
470 ms 239224 KB
#include <bits/stdc++.h>
using namespace std;
#define pii pair<int,int>
#define ll long long
#define f first
#define s second
#define FOR(i,a,b) for (int i = a; i<b; i++)
#define REP(i,n) FOR(i,0,n)
#define RREP(i,n) for (int i = n-1; i>=0; i--)
#define SZ(x) (int)(x.size())
#define ALL(x) x.begin(),x.end()
#define MX(a,b) a = max(a,(__typeof__(a))(b))
#define MN(a,b) a = min(a,(__typeof__(a))(b))
#define pb push_back
#ifdef BALBIT
#define IOS()
#define bug(x) cerr<<__LINE__<<' '<<#x<<": "<<x<<endl
#else
#define IOS() ios::sync_with_stdio(0),cin.tie(0)
#define endl '\n'
#define bug(x)
#endif

const ll mod = 1e9+7;
const int maxn = 3e3+5;
//const ll INF = 0x3f3f3f3f3f3f3f3f;
const int iinf = 0x3f3f3f3f;


#define MAX 300001
#define NIL 0
#define INF (1<<28)

vector< int > G[MAX];
int N, M, match[MAX], dist[MAX];
// n: number of nodes on left side, nodes are numbered 1 to n
// m: number of nodes on right side, nodes are numbered n+1 to n+m
// G = NIL[0] ∪ G1[G[1---n]] ∪ G2[G[n+1---n+m]]

bool bfs() {
    int i, u, v, len;
    queue< int > Q;
    for(i=1; i<=N; i++) {
        if(match[i]==NIL) {
            dist[i] = 0;
            Q.push(i);
        }
        else dist[i] = INF;
    }
    dist[NIL] = INF;
    while(!Q.empty()) {
        u = Q.front(); Q.pop();
        if(u!=NIL) {
            len = G[u].size();
            for(i=0; i<len; i++) {
                v = G[u][i];
                if(dist[match[v]]==INF) {
                    dist[match[v]] = dist[u] + 1;
                    Q.push(match[v]);
                }
            }
        }
    }
    return (dist[NIL]!=INF);
}

bool dfs(int u) {
    int i, v, len;
    if(u!=NIL) {
        len = G[u].size();
        for(i=0; i<len; i++) {
            v = G[u][i];
            if(dist[match[v]]==dist[u]+1) {
                if(dfs(match[v])) {
                    match[v] = u;
                    match[u] = v;
                    return true;
                }
            }
        }
        dist[u] = INF;
        return false;
    }
    return true;
}

int hopcroft_karp() {
    int matching = 0, i;
    // match[] is assumed NIL for all vertex in G
    while(bfs())
        for(i=1; i<=N; i++)
            if(match[i]==NIL && dfs(i))
                matching++;
    return matching;
}
	


char grd[maxn][maxn];

int idup[maxn][maxn];
int idrt[maxn][maxn];
bool up[maxn][maxn];
bool rt[maxn][maxn];


void add(int a, int b, int c){
//	return;
	G[a].pb(b);
}

signed main(){
	IOS();
	int n, m; cin>>n>>m;
	
	REP(i,n) REP(j,m) cin>>grd[i][j];
	int nup = 0, nrt = 0;

	REP(i,n)REP(j,m){

		if(grd[i][j]=='G'){
			if (i && i!=n-1 && grd[i-1][j] == 'R' && grd[i+1][j]=='W' ) {
				up[i][j] = 1;
			}
			if (j && j!=m-1 && grd[i][j-1] == 'R' && grd[i][j+1]=='W' ) {
				rt[i][j] = 1;
			}
		}
	}


//	g.resize(N); ptr.resize(N); level.resize(N);
	int ans = 0;
	REP(i,n) REP(j,m){
		if(up[i][j]){
//			cout<<i<<' '<<j<<' '<<idup[i][j]<<endl;
			bool B = 0;
			if(rt[i][j]) B=1, idrt[i][j] = 1;
			if(i && rt[i-1][j+1]) B=1, idrt[i-1][j+1] = 1;
			if(j && rt[i+1][j-1]) B=1, idrt[i+1][j-1] = 1;
			nup += B; 	
			idup[i][j] = B;
			if (!B) ans ++;
		}
	}
	int nat = 0;
	REP(i,n) REP(j,m){
		if (idrt[i][j]){
			idrt[i][j] = ++nat; 
		}else if (rt[i][j]) ans ++;
	}
	nrt = nat; 
	nat = 0;
	REP(i,n) REP(j,m){
		if(idup[i][j]){
			idup[i][j] = ++nat;
//			cout<<i<<' '<<j<<' '<<idup[i][j]<<endl;
			if(idrt[i][j]) {
				add(idup[i][j], idrt[i][j] + nup, iinf);
			}
			if(i && idrt[i-1][j+1]){
				add(idup[i][j], idrt[i-1][j+1] + nup, iinf);
			}
			if(j && idrt[i+1][j-1]){
				add(idup[i][j], idrt[i+1][j-1] + nup, iinf);
			}
		}

	}
	bug(ans);
	N = nup; 
	bug(nup); bug(nrt); 
	cout<<ans + nup + nrt - hopcroft_karp() << endl;
	
}




# Verdict Execution time Memory Grader output
1 Correct 11 ms 7416 KB Output is correct
2 Correct 8 ms 7416 KB Output is correct
3 Correct 8 ms 7416 KB Output is correct
4 Correct 8 ms 7412 KB Output is correct
5 Correct 9 ms 7416 KB Output is correct
6 Correct 8 ms 7416 KB Output is correct
7 Correct 8 ms 7416 KB Output is correct
8 Correct 8 ms 7416 KB Output is correct
9 Correct 8 ms 7416 KB Output is correct
10 Correct 10 ms 7364 KB Output is correct
11 Correct 8 ms 7544 KB Output is correct
12 Correct 9 ms 7416 KB Output is correct
13 Correct 7 ms 7388 KB Output is correct
14 Correct 8 ms 7416 KB Output is correct
15 Correct 8 ms 7416 KB Output is correct
16 Correct 8 ms 7416 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 7416 KB Output is correct
2 Correct 8 ms 7416 KB Output is correct
3 Correct 8 ms 7416 KB Output is correct
4 Correct 8 ms 7412 KB Output is correct
5 Correct 9 ms 7416 KB Output is correct
6 Correct 8 ms 7416 KB Output is correct
7 Correct 8 ms 7416 KB Output is correct
8 Correct 8 ms 7416 KB Output is correct
9 Correct 8 ms 7416 KB Output is correct
10 Correct 10 ms 7364 KB Output is correct
11 Correct 8 ms 7544 KB Output is correct
12 Correct 9 ms 7416 KB Output is correct
13 Correct 7 ms 7388 KB Output is correct
14 Correct 8 ms 7416 KB Output is correct
15 Correct 8 ms 7416 KB Output is correct
16 Correct 8 ms 7416 KB Output is correct
17 Correct 9 ms 7416 KB Output is correct
18 Correct 8 ms 7416 KB Output is correct
19 Correct 8 ms 7548 KB Output is correct
20 Correct 8 ms 7544 KB Output is correct
21 Correct 8 ms 7460 KB Output is correct
22 Correct 8 ms 7544 KB Output is correct
23 Correct 9 ms 7416 KB Output is correct
24 Correct 8 ms 7416 KB Output is correct
25 Correct 8 ms 7416 KB Output is correct
26 Correct 8 ms 7416 KB Output is correct
27 Correct 8 ms 7544 KB Output is correct
28 Correct 8 ms 7544 KB Output is correct
29 Correct 9 ms 7544 KB Output is correct
30 Correct 9 ms 7544 KB Output is correct
31 Correct 9 ms 7416 KB Output is correct
32 Correct 9 ms 7416 KB Output is correct
33 Correct 8 ms 7544 KB Output is correct
34 Correct 8 ms 7544 KB Output is correct
35 Correct 8 ms 7544 KB Output is correct
36 Correct 8 ms 7544 KB Output is correct
37 Correct 9 ms 7544 KB Output is correct
38 Correct 9 ms 7544 KB Output is correct
39 Correct 10 ms 7544 KB Output is correct
40 Correct 9 ms 7544 KB Output is correct
41 Correct 8 ms 7544 KB Output is correct
42 Correct 9 ms 7544 KB Output is correct
43 Correct 8 ms 7544 KB Output is correct
44 Correct 8 ms 7544 KB Output is correct
45 Correct 9 ms 7544 KB Output is correct
46 Correct 9 ms 7544 KB Output is correct
47 Correct 8 ms 7544 KB Output is correct
48 Correct 9 ms 7544 KB Output is correct
49 Correct 9 ms 7544 KB Output is correct
50 Correct 9 ms 7544 KB Output is correct
51 Correct 9 ms 7544 KB Output is correct
52 Correct 9 ms 7544 KB Output is correct
53 Correct 9 ms 7544 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 7416 KB Output is correct
2 Correct 8 ms 7416 KB Output is correct
3 Correct 8 ms 7416 KB Output is correct
4 Correct 8 ms 7412 KB Output is correct
5 Correct 9 ms 7416 KB Output is correct
6 Correct 8 ms 7416 KB Output is correct
7 Correct 8 ms 7416 KB Output is correct
8 Correct 8 ms 7416 KB Output is correct
9 Correct 8 ms 7416 KB Output is correct
10 Correct 10 ms 7364 KB Output is correct
11 Correct 8 ms 7544 KB Output is correct
12 Correct 9 ms 7416 KB Output is correct
13 Correct 7 ms 7388 KB Output is correct
14 Correct 8 ms 7416 KB Output is correct
15 Correct 8 ms 7416 KB Output is correct
16 Correct 8 ms 7416 KB Output is correct
17 Correct 9 ms 7416 KB Output is correct
18 Correct 8 ms 7416 KB Output is correct
19 Correct 8 ms 7548 KB Output is correct
20 Correct 8 ms 7544 KB Output is correct
21 Correct 8 ms 7460 KB Output is correct
22 Correct 8 ms 7544 KB Output is correct
23 Correct 9 ms 7416 KB Output is correct
24 Correct 8 ms 7416 KB Output is correct
25 Correct 8 ms 7416 KB Output is correct
26 Correct 8 ms 7416 KB Output is correct
27 Correct 8 ms 7544 KB Output is correct
28 Correct 8 ms 7544 KB Output is correct
29 Correct 9 ms 7544 KB Output is correct
30 Correct 9 ms 7544 KB Output is correct
31 Correct 9 ms 7416 KB Output is correct
32 Correct 9 ms 7416 KB Output is correct
33 Correct 8 ms 7544 KB Output is correct
34 Correct 8 ms 7544 KB Output is correct
35 Correct 8 ms 7544 KB Output is correct
36 Correct 8 ms 7544 KB Output is correct
37 Correct 9 ms 7544 KB Output is correct
38 Correct 9 ms 7544 KB Output is correct
39 Correct 10 ms 7544 KB Output is correct
40 Correct 9 ms 7544 KB Output is correct
41 Correct 8 ms 7544 KB Output is correct
42 Correct 9 ms 7544 KB Output is correct
43 Correct 8 ms 7544 KB Output is correct
44 Correct 8 ms 7544 KB Output is correct
45 Correct 9 ms 7544 KB Output is correct
46 Correct 9 ms 7544 KB Output is correct
47 Correct 8 ms 7544 KB Output is correct
48 Correct 9 ms 7544 KB Output is correct
49 Correct 9 ms 7544 KB Output is correct
50 Correct 9 ms 7544 KB Output is correct
51 Correct 9 ms 7544 KB Output is correct
52 Correct 9 ms 7544 KB Output is correct
53 Correct 9 ms 7544 KB Output is correct
54 Correct 9 ms 7416 KB Output is correct
55 Correct 29 ms 17272 KB Output is correct
56 Correct 9 ms 7544 KB Output is correct
57 Correct 33 ms 29028 KB Output is correct
58 Correct 59 ms 31992 KB Output is correct
59 Correct 356 ms 108880 KB Output is correct
60 Correct 379 ms 109008 KB Output is correct
61 Correct 357 ms 109012 KB Output is correct
62 Correct 9 ms 7416 KB Output is correct
63 Correct 352 ms 108824 KB Output is correct
64 Runtime error 470 ms 239224 KB Execution killed with signal 11 (could be triggered by violating memory limits)
65 Halted 0 ms 0 KB -