# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
160478 |
2019-10-27T14:59:43 Z |
Benq |
Cat (info1cup19_cat) |
C++14 |
|
619 ms |
14748 KB |
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rsz resize
const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 200005;
const ld PI = 4*atan((ld)1);
template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }
namespace input {
template<class T> void re(complex<T>& x);
template<class T1, class T2> void re(pair<T1,T2>& p);
template<class T> void re(vector<T>& a);
template<class T, size_t SZ> void re(array<T,SZ>& a);
template<class T> void re(T& x) { cin >> x; }
void re(double& x) { string t; re(t); x = stod(t); }
void re(ld& x) { string t; re(t); x = stold(t); }
template<class Arg, class... Args> void re(Arg& first, Args&... rest) {
re(first); re(rest...);
}
template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}
using namespace input;
namespace output {
template<class T1, class T2> void pr(const pair<T1,T2>& x);
template<class T, size_t SZ> void pr(const array<T,SZ>& x);
template<class T> void pr(const vector<T>& x);
template<class T> void pr(const set<T>& x);
template<class T1, class T2> void pr(const map<T1,T2>& x);
template<class T> void pr(const T& x) { cout << x; }
template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) {
pr(first); pr(rest...);
}
template<class T1, class T2> void pr(const pair<T1,T2>& x) {
pr("{",x.f,", ",x.s,"}");
}
template<class T> void prContain(const T& x) {
pr("{");
bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0; // const needed for vector<bool>
pr("}");
}
template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
template<class T> void pr(const vector<T>& x) { prContain(x); }
template<class T> void pr(const set<T>& x) { prContain(x); }
template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
void ps() { pr("\n"); }
template<class Arg> void ps(const Arg& first) {
pr(first); ps(); // no space at end of line
}
template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) {
pr(first," "); ps(rest...); // print w/ spaces
}
}
using namespace output;
namespace io {
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void setIO(string s = "") {
ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}
}
using namespace io;
template<class T> T invGeneral(T a, T b) {
a %= b; if (a == 0) return b == 1 ? 0 : -1;
T x = invGeneral(b,a);
return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}
template<class T> struct modular {
T val;
explicit operator T() const { return val; }
modular() { val = 0; }
modular(const ll& v) {
val = (-MOD <= v && v <= MOD) ? v : v % MOD;
if (val < 0) val += MOD;
}
friend ostream& operator<<(ostream& os, const modular& a) { return os << a.val; }
friend bool operator==(const modular& a, const modular& b) { return a.val == b.val; }
friend bool operator!=(const modular& a, const modular& b) { return !(a == b); }
friend bool operator<(const modular& a, const modular& b) { return a.val < b.val; }
modular operator-() const { return modular(-val); }
modular& operator+=(const modular& m) { if ((val += m.val) >= MOD) val -= MOD; return *this; }
modular& operator-=(const modular& m) { if ((val -= m.val) < 0) val += MOD; return *this; }
modular& operator*=(const modular& m) { val = (ll)val*m.val%MOD; return *this; }
friend modular pow(modular a, ll p) {
modular ans = 1; for (; p; p /= 2, a *= a) if (p&1) ans *= a;
return ans;
}
friend modular inv(const modular& a) {
auto i = invGeneral(a.val,MOD); assert(i != -1);
return i;
} // equivalent to return exp(b,MOD-2) if MOD is prime
modular& operator/=(const modular& m) { return (*this) *= inv(m); }
friend modular operator+(modular a, const modular& b) { return a += b; }
friend modular operator-(modular a, const modular& b) { return a -= b; }
friend modular operator*(modular a, const modular& b) { return a *= b; }
friend modular operator/(modular a, const modular& b) { return a /= b; }
};
typedef modular<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
vpi v;
int N;
vpi ans;
void mov(int a, int b, int c) {
if (c == 0) {
ans.pb({a+1,b+1});
swap(v[a],v[b]);
} else {
ans.pb({a+1,N-b});
swap(v[a],v[b]);
v[a].s ^= 1, v[b].s ^= 1;
}
}
int tri(vpi a) {
vector<bool> vis(sz(a));
int res = 0;
F0R(i,sz(a)) if (!vis[i]) {
int rev = 0, cnt = 0;
int cur = i;
while (!vis[cur]) {
cnt ++;
vis[cur] = 1; rev += a[cur].s;
cur = a[cur].f;
}
res += cnt-1+(rev&1);
}
return res;
}
void solve() {
v.clear(); ans.clear();
re(N); vi a(N); re(a);
trav(t,a) t --;
F0R(i,N/2) if (a[i]+a[N-1-i] != N-1) {
ps(-1);
return;
}
F0R(i,N/2) v.pb({min(a[i],a[N-1-i]),a[i] > a[N-1-i]});
int tmp = tri(v);
F0R(i,N/2) while (v[i].f != i) {
if (v[i].s && v[v[i].f].s) mov(i,v[i].f,1);
else mov(i,v[i].f,0);
}
vi bad;
F0R(i,sz(v)) if (v[i].s) bad.pb(i);
if (sz(bad)&1) {
ps(-1);
return;
}
while (sz(bad) > 1) {
mov(bad[sz(bad)-2],bad[sz(bad)-1],0);
mov(bad[sz(bad)-2],bad[sz(bad)-1],1);
bad.pop_back();
bad.pop_back();
}
// ps(v);
ps(tmp,sz(ans));
trav(t,ans) ps(t.f,t.s);
}
int main() {
setIO();
int T; re(T);
F0R(i,T) solve();
}
/* stuff you should look for
* int overflow, array bounds
* special cases (n=1?), set tle
* do smth instead of nothing and stay organized
*/
Compilation message
cat.cpp: In function 'void io::setIn(std::__cxx11::string)':
cat.cpp:110:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
~~~~~~~^~~~~~~~~~~~~~~~~~~~~
cat.cpp: In function 'void io::setOut(std::__cxx11::string)':
cat.cpp:111:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
7 ms |
376 KB |
Correct number of moves and valid reconstruction |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
26 ms |
632 KB |
Output is correct |
2 |
Correct |
26 ms |
604 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
7 ms |
376 KB |
Correct number of moves and valid reconstruction |
2 |
Correct |
26 ms |
632 KB |
Output is correct |
3 |
Correct |
26 ms |
604 KB |
Output is correct |
4 |
Correct |
32 ms |
632 KB |
Correct number of moves and valid reconstruction |
5 |
Correct |
12 ms |
504 KB |
Correct number of moves and valid reconstruction |
6 |
Correct |
10 ms |
504 KB |
Correct number of moves and valid reconstruction |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
26 ms |
632 KB |
Output is correct |
2 |
Correct |
26 ms |
604 KB |
Output is correct |
3 |
Correct |
536 ms |
10392 KB |
Output is correct |
4 |
Correct |
517 ms |
9916 KB |
Output is correct |
5 |
Correct |
592 ms |
12784 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
7 ms |
376 KB |
Correct number of moves and valid reconstruction |
2 |
Correct |
26 ms |
632 KB |
Output is correct |
3 |
Correct |
26 ms |
604 KB |
Output is correct |
4 |
Correct |
32 ms |
632 KB |
Correct number of moves and valid reconstruction |
5 |
Correct |
12 ms |
504 KB |
Correct number of moves and valid reconstruction |
6 |
Correct |
10 ms |
504 KB |
Correct number of moves and valid reconstruction |
7 |
Correct |
536 ms |
10392 KB |
Output is correct |
8 |
Correct |
517 ms |
9916 KB |
Output is correct |
9 |
Correct |
592 ms |
12784 KB |
Output is correct |
10 |
Correct |
572 ms |
11100 KB |
Correct number of moves and valid reconstruction |
11 |
Correct |
510 ms |
9156 KB |
Correct number of moves and valid reconstruction |
12 |
Correct |
570 ms |
12724 KB |
Correct number of moves and valid reconstruction |
13 |
Correct |
619 ms |
14748 KB |
Correct number of moves and valid reconstruction |
14 |
Correct |
575 ms |
12576 KB |
Correct number of moves and valid reconstruction |