Submission #156969

# Submission time Handle Problem Language Result Execution time Memory
156969 2019-10-08T16:46:06 Z youngyojun Fibonacci representations (CEOI18_fib) C++11
100 / 100
654 ms 14980 KB
#include <bits/stdc++.h>
#define eb emplace_back
#define sz(V) ((int)(V).size())
#define allv(V) ((V).begin()),((V).end())
#define sorv(V) sort(allv(V))
#define univ(V) (V).erase(unique(allv(V)),(V).end())
#define upmin(a,b) (a)=min((a),(b))
#define INF (0x3f3f3f3f)
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
 
const int MOD = 1000000007;
 
struct MAT {
	MAT(int a = 1, int b = 0, int c = 0, int d = 1)
		: a(a), b(b), c(c), d(d) {}
	int a, b, c, d;
 
	void init() { a = d = 1; b = c = 0; }
	MAT operator * (const MAT &t) const {
		return MAT((ll(a)*t.a + ll(b)*t.c)%MOD, (ll(a)*t.b + ll(b)*t.d)%MOD
				 , (ll(c)*t.a + ll(d)*t.c)%MOD, (ll(c)*t.b + ll(d)*t.d)%MOD);
	}
	void cal(int ps, int pe, int s, int e) {
		if(e < 0) return;
		if(ps < 0) { init(); return; }
		int l = s-pe-1, ct = (e-s)>>1;
		a = (l+1)>>1; b = l>>1;
		c = (ll(ct)*((l+1)>>1) + 1) % MOD;
		d = (ll(ct)*(l>>1) + 1) % MOD;
	}
};

struct NOD {
	NOD(int si, int ei)
		: p(0), l(0), r(0), si(si), ei(ei) {}
	NOD *p, *l, *r;
	MAT dt, pd;
	int si, ei;

	void upd() {
		pd.init();
		if(l) pd = l->pd;
		pd = dt * pd;
		if(r) pd = r->pd * pd;
	}
	void rot() {
		NOD *c = p, *g = p->p;
		if(this == p->l) {
			p->l = r;
			if(r) r->p = p;
			r = p;
		} else {
			p->r = l;
			if(l) l->p = p;
			l = p;
		}
		p->p = this; p = g;
		if(g) (g->l == c ? g->l : g->r) = this;
		c->upd(); upd();
	}

	void cal(NOD *x) {
		dt.cal(x->si, x->ei, si, ei);
		upd();
	}
};

struct SPT {
	NOD *rt;

	void init() {
		rt = new NOD(-INF, -INF);
		rt->r = new NOD(INF, -1);
		rt->r->p = rt;
	}

	NOD* splay(NOD *x) {
		for(NOD *g; x->p;) {
			if(!(g = x->p->p)) {
				x->rot();
				break;
			}
			((g->l == x->p) == (x->p->l == x) ? x->p : x)->rot();
			x->rot();
		}
		return rt = x;
	}

	NOD* find(int K) {
		NOD *x = rt, *pv, *ret = 0;
		for(; x;) {
			pv = x;
			if(K <= x->si) {
				if(!ret || x->si < ret->si) ret = x;
				x = x->l;
			} else x = x->r;
		}
		splay(pv);
		return splay(ret);
	}

	NOD* prev(NOD *x) {
		if(!x->l) {
			for(; x->p->l == x;) x = x->p;
			return splay(x->p);
		}
		x = x->l;
		for(; x->r;) x = x->r;
		return splay(x);
	}
	NOD* next(NOD *x) {
		if(!x->r) {
			for(; x->p->r == x;) x = x->p;
			return splay(x->p);
		}
		x = x->r;
		for(; x->l;) x = x->l;
		return splay(x);
	}

	void pop(NOD *x) {
		splay(x);
		NOD *l = x->l, *r = x->r;
		delete x; x = 0;
		l->p = r->p = 0; rt = l;
		for(x = r; x->l;) x = x->l;
		for(; l->r;) l = l->r;
		x->cal(l);
		for(NOD *p = x; p; p = p->p) p->upd();
		l->r = r; r->p = l;
		for(; l; l = l->p) l->upd();
		splay(x);
	}
	void pop(int si, int ei) { pop(find(si)); }

	NOD* push(int si, int ei) {
		find(ei+1);
		NOD *x = new NOD(si, ei), *l = rt->l;
		rt->l = 0; x->l = l; l->p = x;
		x->r = rt; rt->p = x;
		rt->cal(x);
		for(; l->r;) l = l->r;
		x->cal(l);
		for(NOD *p = l; p; p = p->p) p->upd();
		splay(l);
		return splay(x);
	}

	MAT get() { return rt->pd; }
} spt;

const int MAXN = 100005;

set<pii> CH;

set<pii>::iterator get(int X) { return prev(CH.upper_bound({X, INF})); }
bool has(int X) {
	auto it = CH.upper_bound({X, INF});
	if(CH.begin() == it) return false;
	int s, e; tie(s, e) = *prev(it);
	return s <= X && X <= e && (s&1) == (X&1);
}

void insert(int s, int e) {
	bool flag = CH.insert({s, e}).second;
	if(flag) spt.push(s, e);
}
void erase(set<pii>::iterator it) {
	spt.pop(it->first, it->second);
	CH.erase(it);
}

void push(int X) {
	if(X < 1) return;
	if(1 == X) X = 2;
	if(!has(X)) {
		if(has(X-1) && !has(X+1)) {
			auto it = get(X-1);
			int s, e; tie(s, e) = *it;
			erase(it);
			e -= 2;
			if(s <= e) insert(s, e);
			push(X+1);
			return;
		}
		if(!has(X-1) && has(X+1)) {
			auto it = get(X+1);
			int s, e; tie(s, e) = *it;
			erase(it);
			push(e+1);
			return;
		}
		if(has(X-1) && has(X+1)) {
			auto it = get(X);
			int s, e; tie(s, e) = *it;
			erase(it);
			insert(s, X-1);
			push(e+1);
			return;
		}
		int s = X, e = X;
		if(has(X-2)) {
			auto it = get(X-2);
			int p, q; tie(p, q) = *it;
			erase(it);
			s = p;
		}
		if(has(X+2)) {
			auto it = get(X+2);
			int p, q; tie(p, q) = *it;
			erase(it);
			e = q;
		}
		insert(s, e);
		return;
	}

	auto it = get(X);
	int s, e; tie(s, e) = *it;
	erase(it);
	if(s+1 < X) insert(s+1, X-1);
	push(e+1);
	push(s-2);
}


int N;

ll getAns() {
	if(CH.empty()) return 0;
	MAT mat = spt.get();
	int s, e; tie(s, e) = *CH.begin();
	ll a = 0, b;
	if(1 < s-2) a = (ll(s-4)/2 + 1) % MOD;
	b = (1 + ll(s-2)/2 * ((e-s)/2)) % MOD;

	ll ret = a*mat.a % MOD;
	ret += b*mat.b % MOD;
	ret += a*mat.c % MOD;
	ret += b*mat.d % MOD;
	return ret % MOD;
}

int main() {
	ios::sync_with_stdio(false);

	spt.init();
	cin >> N;
	for(int i = 0; i < N; i++) {
		int x;
		cin >> x;
		push(x+1);
		printf("%lld\n", getAns());
	}
	return 0;
}

Compilation message

fib.cpp: In function 'void insert(int, int)':
fib.cpp:100:8: warning: 'pv' may be used uninitialized in this function [-Wmaybe-uninitialized]
   splay(pv);
   ~~~~~^~~~
fib.cpp:92:17: note: 'pv' was declared here
   NOD *x = rt, *pv, *ret = 0;
                 ^~
fib.cpp: In function 'void erase(std::set<std::pair<int, int> >::iterator)':
fib.cpp:100:8: warning: 'pv' may be used uninitialized in this function [-Wmaybe-uninitialized]
   splay(pv);
   ~~~~~^~~~
fib.cpp:92:17: note: 'pv' was declared here
   NOD *x = rt, *pv, *ret = 0;
                 ^~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 504 KB Output is correct
2 Correct 2 ms 380 KB Output is correct
3 Correct 2 ms 376 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 504 KB Output is correct
2 Correct 2 ms 380 KB Output is correct
3 Correct 2 ms 376 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 2 ms 376 KB Output is correct
8 Correct 2 ms 376 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 2 ms 376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 296 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 504 KB Output is correct
2 Correct 2 ms 380 KB Output is correct
3 Correct 2 ms 376 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 2 ms 376 KB Output is correct
8 Correct 2 ms 376 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 2 ms 376 KB Output is correct
13 Correct 2 ms 296 KB Output is correct
14 Correct 2 ms 376 KB Output is correct
15 Correct 2 ms 376 KB Output is correct
16 Correct 2 ms 376 KB Output is correct
17 Correct 2 ms 376 KB Output is correct
18 Correct 2 ms 376 KB Output is correct
19 Correct 2 ms 376 KB Output is correct
20 Correct 2 ms 376 KB Output is correct
21 Correct 2 ms 376 KB Output is correct
22 Correct 2 ms 376 KB Output is correct
23 Correct 2 ms 376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 595 ms 14940 KB Output is correct
3 Correct 639 ms 12168 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 504 KB Output is correct
2 Correct 2 ms 380 KB Output is correct
3 Correct 2 ms 376 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 2 ms 376 KB Output is correct
8 Correct 2 ms 376 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 2 ms 376 KB Output is correct
13 Correct 2 ms 296 KB Output is correct
14 Correct 2 ms 376 KB Output is correct
15 Correct 2 ms 376 KB Output is correct
16 Correct 2 ms 376 KB Output is correct
17 Correct 2 ms 376 KB Output is correct
18 Correct 2 ms 376 KB Output is correct
19 Correct 2 ms 376 KB Output is correct
20 Correct 2 ms 376 KB Output is correct
21 Correct 2 ms 376 KB Output is correct
22 Correct 2 ms 376 KB Output is correct
23 Correct 2 ms 376 KB Output is correct
24 Correct 2 ms 376 KB Output is correct
25 Correct 595 ms 14940 KB Output is correct
26 Correct 639 ms 12168 KB Output is correct
27 Correct 158 ms 4696 KB Output is correct
28 Correct 263 ms 7624 KB Output is correct
29 Correct 60 ms 632 KB Output is correct
30 Correct 260 ms 6888 KB Output is correct
31 Correct 132 ms 1400 KB Output is correct
32 Correct 206 ms 5240 KB Output is correct
33 Correct 160 ms 1912 KB Output is correct
34 Correct 150 ms 1272 KB Output is correct
35 Correct 276 ms 2552 KB Output is correct
36 Correct 316 ms 2040 KB Output is correct
37 Correct 310 ms 1572 KB Output is correct
38 Correct 605 ms 14980 KB Output is correct
39 Correct 89 ms 808 KB Output is correct
40 Correct 134 ms 1016 KB Output is correct
41 Correct 472 ms 1964 KB Output is correct
42 Correct 597 ms 14708 KB Output is correct
43 Correct 158 ms 2424 KB Output is correct
44 Correct 232 ms 2388 KB Output is correct
45 Correct 311 ms 3472 KB Output is correct
46 Correct 252 ms 2044 KB Output is correct
47 Correct 513 ms 9976 KB Output is correct
48 Correct 325 ms 2416 KB Output is correct
49 Correct 468 ms 3596 KB Output is correct
50 Correct 654 ms 13688 KB Output is correct