# | Time | Username | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
143677 | Benq | Coins (LMIO19_monetos) | C++14 | 1877 ms | 133104 KiB |
This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rsz resize
const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 305;
const ld PI = 4*atan((ld)1);
template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }
namespace input {
template<class T> void re(complex<T>& x);
template<class T1, class T2> void re(pair<T1,T2>& p);
template<class T> void re(vector<T>& a);
template<class T, size_t SZ> void re(array<T,SZ>& a);
template<class T> void re(T& x) { cin >> x; }
void re(double& x) { string t; re(t); x = stod(t); }
void re(ld& x) { string t; re(t); x = stold(t); }
template<class Arg, class... Args> void re(Arg& first, Args&... rest) {
re(first); re(rest...);
}
template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}
using namespace input;
namespace output {
template<class T1, class T2> void pr(const pair<T1,T2>& x);
template<class T, size_t SZ> void pr(const array<T,SZ>& x);
template<class T> void pr(const vector<T>& x);
template<class T> void pr(const set<T>& x);
template<class T1, class T2> void pr(const map<T1,T2>& x);
template<class T> void pr(const T& x) { cout << x; }
template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) {
pr(first); pr(rest...);
}
template<class T1, class T2> void pr(const pair<T1,T2>& x) {
pr("{",x.f,", ",x.s,"}");
}
template<class T> void prContain(const T& x) {
pr("{");
bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0; // const needed for vector<bool>
pr("}");
}
template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
template<class T> void pr(const vector<T>& x) { prContain(x); }
template<class T> void pr(const set<T>& x) { prContain(x); }
template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
void ps() { pr("\n"); }
template<class Arg> void ps(const Arg& first) {
pr(first); ps(); // no space at end of line
}
template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) {
pr(first," "); ps(rest...); // print w/ spaces
}
}
using namespace output;
namespace io {
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void setIO(string s = "") {
ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}
}
using namespace io;
template<class T> T invGeneral(T a, T b) {
a %= b; if (a == 0) return b == 1 ? 0 : -1;
T x = invGeneral(b,a);
return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}
template<class T> struct modular {
T val;
explicit operator T() const { return val; }
modular() { val = 0; }
modular(const ll& v) {
val = (-MOD <= v && v <= MOD) ? v : v % MOD;
if (val < 0) val += MOD;
}
// friend ostream& operator<<(ostream& os, const modular& a) { return os << a.val; }
friend void pr(const modular& a) { pr(a.val); }
friend void re(modular& a) { ll x; re(x); a = modular(x); }
friend bool operator==(const modular& a, const modular& b) { return a.val == b.val; }
friend bool operator!=(const modular& a, const modular& b) { return !(a == b); }
friend bool operator<(const modular& a, const modular& b) { return a.val < b.val; }
modular operator-() const { return modular(-val); }
modular& operator+=(const modular& m) { if ((val += m.val) >= MOD) val -= MOD; return *this; }
modular& operator-=(const modular& m) { if ((val -= m.val) < 0) val += MOD; return *this; }
modular& operator*=(const modular& m) { val = (ll)val*m.val%MOD; return *this; }
friend modular pow(modular a, ll p) {
modular ans = 1; for (; p; p /= 2, a *= a) if (p&1) ans *= a;
return ans;
}
friend modular inv(const modular& a) {
auto i = invGeneral(a.val,MOD); assert(i != -1);
return i;
} // equivalent to return exp(b,MOD-2) if MOD is prime
modular& operator/=(const modular& m) { return (*this) *= inv(m); }
friend modular operator+(modular a, const modular& b) { return a += b; }
friend modular operator-(modular a, const modular& b) { return a -= b; }
friend modular operator*(modular a, const modular& b) { return a *= b; }
friend modular operator/(modular a, const modular& b) { return a /= b; }
};
typedef modular<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int T,N,K1,K2,g[MX][MX],res[MX][MX];
vi dp[MX][MX]; // i rows done, last row has >= j, k total
void check(vi& a, const vi& b) {
while (sz(a) < sz(b)) a.pb(MOD);
F0R(i,sz(b)) ckmin(a[i],b[i]);
}
vi shift(vi a, int b, int c) {
trav(t,a) t += c;
a.insert(a.begin(),b,MOD);
if (sz(a) > N*N/2) a.rsz(N*N/2+1);
return a;
}
void exact() {
dp[0][N] = {0};
F0Rd(j,N) check(dp[0][j],dp[0][j+1]);
F0R(i,N) {
int dif = 0;
F0R(j,N+1) {
dp[i+1][j] = shift(dp[i][j],j,dif);
if (j < N) dif += g[i][j];
}
F0Rd(j,N) check(dp[i+1][j],dp[i+1][j+1]);
}
int j = 0, k = N*N/2;
F0Rd(i,N) {
while (k < sz(dp[i+1][j+1]) && dp[i+1][j+1][k] == dp[i+1][j][k]) j ++;
k -= j;
FOR(z,j,N) res[i][z] = 1;
}
}
int BAD = 120;
double val (pi t) {
return double(t.s)/t.f;
}
int tot = 0, z = 0, maxBound;
pi exists[1000];
void ins(pi t) {
int q = t.f/maxBound; ckmax(z,q);
if (exists[q].f != MOD) return;
exists[q] = t; tot ++;
}
int CC;
vpi compress(vpi v) {
if (N <= 50 || sz(v) <= BAD) return v;
// F0R(i,sz(v)-1) assert(v[i] < v[i+1]);
tot = 0; F0R(i,CC*BAD/2+1) exists[i] = {MOD,MOD};
pi mx = v.back(); v.pop_back();
maxBound = mx.f/(CC*BAD/2)+1;
ins(mx); assert(tot == 1);
sort(all(v),[](pi a, pi b) { return val(a) < val(b); });
trav(t,v) {
ins(t);
if (tot == BAD) break;
}
vpi res;
F0R(i,CC*BAD/2+1) if (exists[i].f != MOD) res.pb(exists[i]);
// F0R(i,sz(res)-1) assert(res[i].f < res[i+1].f);
/*if (res.back() != mx) {
// ins(mx);
ps("??",sz(v),sz(res),res.back(),mx,mx.f/(N/2),exists[2]);
exit(0);
}*/
return res;
/*vpi V; int mn = MOD;
F0Rd(i,sz(v)) {
if (v[i].s >= mn) continue;
mn = v[i].s; V.pb(v[i]);
}
// those with the min value of v[i].s/v[i].f
reverse(all(V));
vector<bool> ok(sz(V)); ok[0] = ok[sz(V)-1] = 1;
vi select(sz(V)); F0R(i,sz(select)) select[i] = i;
random_shuffle(all(select));
F0R(i,min(100,sz(select))) ok[select[i]] = 1;
vpi res;
F0R(i,sz(V)) if (ok[i]) res.pb(V[i]);
return res;*/
}
void check(vpi& a, vpi b) {
vpi c;
int ind = 0;
F0R(i,sz(a)) {
while (ind < sz(b) && b[ind].f < a[i].f) c.pb(b[ind++]);
if (ind < sz(b) && b[ind].f == a[i].f) ckmin(a[i].s,b[ind++].s);
c.pb(a[i]);
}
while (ind < sz(b)) c.pb(b[ind++]);
a = compress(c);
}
vpi shift(vpi a, int b, int c) {
trav(t,a) t.f += b, t.s += c;
while (sz(a) && a.back().f > N*N/2) a.pop_back();
return a;
}
int get(vpi& a, int b) {
auto it = lb(all(a),mp(b,-MOD));
if (it == end(a) || it->f != b) return MOD;
return it->s;
}
vpi DP[MX][MX];
void approx() {
DP[0][N] = {{0,0}};
F0Rd(j,N) check(DP[0][j],DP[0][j+1]);
F0R(i,N) {
int dif = 0;
F0R(j,N+1) {
DP[i+1][j] = shift(DP[i][j],j,dif);
if (j < N) dif += g[i][j];
}
F0Rd(j,N) check(DP[i+1][j],DP[i+1][j+1]);
}
// exit(0);
// ps("HUH",DP[N][0].back());
// F0R(i,N+1) if (sz(DP[N][i])) ps(i,DP[N][i].back());
// ps(z);
if (get(DP[N][0],N*N/2) == MOD) {
ps("ANS DOES NOT EXIST",DP[N][0].back());
exit(0);
}
int j = 0, k = N*N/2;
F0Rd(i,N) {
while (get(DP[i+1][j+1],k) == get(DP[i+1][j],k)) j ++;
k -= j;
FOR(z,j,N) res[i][z] = 1;
}
}
int main() {
setIO(); re(T,N,K1,K2);
F0R(i,N) F0R(j,N) {
re(g[i][j]);
// g[i][j] = rand()&1;
}
if (T == 3) CC = 3;
if (T == 4) CC = 6;
if (T == 5) CC = 4, BAD = 150;
if (T == 6) CC = 4, BAD = 150;
if (T == 7) CC = 4;
if (T == 8) CC = 6, BAD = 150;
if (T == 9) CC = 6;
if (T == 10) CC = 5;
approx();
F0R(i,N) {
F0R(j,N) pr(res[i][j],' ');
ps();
}
}
/* stuff you should look for
* int overflow, array bounds
* special cases (n=1?), set tle
* do smth instead of nothing and stay organized
*/
Compilation message (stderr)
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |