Submission #143631

# Submission time Handle Problem Language Result Execution time Memory
143631 2019-08-14T18:52:22 Z Benq Cards (LMIO19_korteles) C++14
100 / 100
136 ms 19232 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")

#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)

#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound

#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rsz resize

const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 200005;
const ld PI = 4*atan((ld)1);

template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }

namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1,T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, size_t SZ> void re(array<T,SZ>& a);

    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class Arg, class... Args> void re(Arg& first, Args&... rest) { 
        re(first); re(rest...); 
    }

    template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
    template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
    template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
    template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}

using namespace input;

namespace output {
    template<class T1, class T2> void pr(const pair<T1,T2>& x);
    template<class T, size_t SZ> void pr(const array<T,SZ>& x);
    template<class T> void pr(const vector<T>& x);
    template<class T> void pr(const set<T>& x);
    template<class T1, class T2> void pr(const map<T1,T2>& x);

    template<class T> void pr(const T& x) { cout << x; }
    template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) { 
        pr(first); pr(rest...); 
    }

    template<class T1, class T2> void pr(const pair<T1,T2>& x) { 
        pr("{",x.f,", ",x.s,"}"); 
    }
    template<class T> void prContain(const T& x) {
        pr("{");
        bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0; // const needed for vector<bool>
        pr("}");
    }
    template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
    template<class T> void pr(const vector<T>& x) { prContain(x); }
    template<class T> void pr(const set<T>& x) { prContain(x); }
    template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
    
    void ps() { pr("\n"); }
    template<class Arg> void ps(const Arg& first) { 
        pr(first); ps(); // no space at end of line
    }
    template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) { 
        pr(first," "); ps(rest...); // print w/ spaces
    }
}

using namespace output;

namespace io {
    void setIn(string s) { freopen(s.c_str(),"r",stdin); }
    void setOut(string s) { freopen(s.c_str(),"w",stdout); }
    void setIO(string s = "") {
        ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
        if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
    }
}

using namespace io;

template<class T> T invGeneral(T a, T b) {
    a %= b; if (a == 0) return b == 1 ? 0 : -1;
    T x = invGeneral(b,a); 
    return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}

template<class T> struct modular {
    T val; 
    explicit operator T() const { return val; }
    modular() { val = 0; }
    modular(const ll& v) { 
        val = (-MOD <= v && v <= MOD) ? v : v % MOD;
        if (val < 0) val += MOD;
    }
    
    // friend ostream& operator<<(ostream& os, const modular& a) { return os << a.val; }
    friend void pr(const modular& a) { pr(a.val); }
    friend void re(modular& a) { ll x; re(x); a = modular(x); }
   
    friend bool operator==(const modular& a, const modular& b) { return a.val == b.val; }
    friend bool operator!=(const modular& a, const modular& b) { return !(a == b); }
    friend bool operator<(const modular& a, const modular& b) { return a.val < b.val; }

    modular operator-() const { return modular(-val); }
    modular& operator+=(const modular& m) { if ((val += m.val) >= MOD) val -= MOD; return *this; }
    modular& operator-=(const modular& m) { if ((val -= m.val) < 0) val += MOD; return *this; }
    modular& operator*=(const modular& m) { val = (ll)val*m.val%MOD; return *this; }
    friend modular pow(modular a, ll p) {
        modular ans = 1; for (; p; p /= 2, a *= a) if (p&1) ans *= a;
        return ans;
    }
    friend modular inv(const modular& a) { 
        auto i = invGeneral(a.val,MOD); assert(i != -1);
        return i;
    } // equivalent to return exp(b,MOD-2) if MOD is prime
    modular& operator/=(const modular& m) { return (*this) *= inv(m); }
    
    friend modular operator+(modular a, const modular& b) { return a += b; }
    friend modular operator-(modular a, const modular& b) { return a -= b; }
    friend modular operator*(modular a, const modular& b) { return a *= b; }
    
    friend modular operator/(modular a, const modular& b) { return a /= b; }
};

typedef modular<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());

int N;
vector<string> v;
ll ans;
ll up[676], down[676], lef[676], ri[676];
int oc[676*676];

int hsh(char a, char b) {
	return 26*(a-'A')+(b-'A');
}

int hsh(int a, int b, int c, int d) {
	int res = a;
	res = 26*res+b;
	res = 26*res+c;
	res = 26*res+d;
	return res;
}

string inp() {
	string a,b; re(a,b);
	return a+b;
}

void SUB(int x, int y) {
	if (x != y) ans -= oc[x]*oc[y];
}

void sub(int x, int y) {
	if (x < y) SUB(x,y);
}

bool match(string a, string b) {
	if (a[0] == b[2] && a[1] == b[3]) return 1;
	if (a[0] == b[1] && a[2] == b[3]) return 1;
	swap(a,b);
	if (a[0] == b[2] && a[1] == b[3]) return 1;
	if (a[0] == b[1] && a[2] == b[3]) return 1;
	return 0;
}

int main() {
    setIO(); re(N); 
    F0R(i,N) v.pb(inp());
    //int tmp = 0;
    //F0R(i,sz(v)) FOR(j,i+1,sz(v)) tmp += match(v[i],v[j]);
    // ps("HA",tmp);
    trav(t,v) {
    	oc[hsh(t[0]-'A',t[1]-'A',t[2]-'A',t[3]-'A')] = 1;
    	up[hsh(t[0],t[1])] ++;
    	down[hsh(t[2],t[3])] ++;
    	lef[hsh(t[0],t[2])] ++;
    	ri[hsh(t[1],t[3])] ++;
    }
    F0R(i,676) {
    	ans += up[i]*down[i];
    	ans += lef[i]*ri[i];
    }
    //ps("HUH",ans);
    F0R(a,26) F0R(b,26) F0R(c,26) F0R(d,26) {
    	sub(hsh(a,b,c,d),hsh(b,a,d,c));
    	sub(hsh(a,b,c,d),hsh(c,d,a,b));
    }
    //ps("HUH",ans);
    F0R(a,26) F0R(b,26) {
    	F0R(i,26) F0R(j,26) SUB(hsh(i,a,a,b),hsh(a,b,b,j));
    	F0R(i,26) F0R(j,26) SUB(hsh(a,b,i,a),hsh(b,j,a,b));
    }
    //ps("HUH",ans);
    F0R(i,26) F0R(j,26) if (i < j) ans += 3*oc[hsh(i,j,j,i)]*oc[hsh(j,i,i,j)];
    F0R(a,26) ans -= 2*oc[hsh(a,a,a,a)];
    F0R(a,26) F0R(b,26) if (a != b) ans -= oc[hsh(a,b,a,b)];
    F0R(a,26) F0R(b,26) if (a != b) ans -= oc[hsh(a,a,b,b)];
    ps(ans);
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?), set tle
    * do smth instead of nothing and stay organized
*/

Compilation message

korteles.cpp: In function 'void io::setIn(std::__cxx11::string)':
korteles.cpp:113:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                            ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
korteles.cpp: In function 'void io::setOut(std::__cxx11::string)':
korteles.cpp:114:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                             ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 5 ms 380 KB Output is correct
2 Correct 5 ms 376 KB Output is correct
3 Correct 5 ms 504 KB Output is correct
4 Correct 5 ms 504 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 376 KB Output is correct
2 Correct 6 ms 1656 KB Output is correct
3 Correct 5 ms 760 KB Output is correct
4 Correct 7 ms 2424 KB Output is correct
5 Correct 7 ms 1784 KB Output is correct
6 Correct 7 ms 2168 KB Output is correct
7 Correct 5 ms 376 KB Output is correct
8 Correct 5 ms 380 KB Output is correct
9 Correct 5 ms 376 KB Output is correct
10 Correct 5 ms 504 KB Output is correct
11 Correct 5 ms 504 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 128 ms 16852 KB Output is correct
2 Correct 130 ms 19180 KB Output is correct
3 Correct 136 ms 19232 KB Output is correct
4 Correct 130 ms 19232 KB Output is correct
5 Correct 129 ms 19220 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 376 KB Output is correct
2 Correct 19 ms 3816 KB Output is correct
3 Correct 91 ms 16916 KB Output is correct
4 Correct 54 ms 8720 KB Output is correct
5 Correct 54 ms 8676 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 376 KB Output is correct
2 Correct 6 ms 1656 KB Output is correct
3 Correct 5 ms 760 KB Output is correct
4 Correct 7 ms 2424 KB Output is correct
5 Correct 7 ms 1784 KB Output is correct
6 Correct 7 ms 2168 KB Output is correct
7 Correct 5 ms 376 KB Output is correct
8 Correct 5 ms 380 KB Output is correct
9 Correct 5 ms 376 KB Output is correct
10 Correct 5 ms 504 KB Output is correct
11 Correct 5 ms 504 KB Output is correct
12 Correct 128 ms 16852 KB Output is correct
13 Correct 130 ms 19180 KB Output is correct
14 Correct 136 ms 19232 KB Output is correct
15 Correct 130 ms 19232 KB Output is correct
16 Correct 129 ms 19220 KB Output is correct
17 Correct 19 ms 3816 KB Output is correct
18 Correct 91 ms 16916 KB Output is correct
19 Correct 54 ms 8720 KB Output is correct
20 Correct 54 ms 8676 KB Output is correct
21 Correct 33 ms 5988 KB Output is correct
22 Correct 103 ms 18616 KB Output is correct
23 Correct 67 ms 10628 KB Output is correct
24 Correct 68 ms 10880 KB Output is correct