Submission #134481

# Submission time Handle Problem Language Result Execution time Memory
134481 2019-07-22T19:24:50 Z Benq Space Pirate (JOI14_space_pirate) C++14
47 / 100
2000 ms 22776 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)
 
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
 
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rsz resize
 
const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 100005;
const ld PI = 4*atan((ld)1);
 
template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }
 
namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1,T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, size_t SZ> void re(array<T,SZ>& a);
 
    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class Arg, class... Args> void re(Arg& first, Args&... rest) { 
        re(first); re(rest...); 
    }
 
    template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
    template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
    template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
    template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}
 
using namespace input;
 
namespace output {
    template<class T1, class T2> void pr(const pair<T1,T2>& x);
    template<class T, size_t SZ> void pr(const array<T,SZ>& x);
    template<class T> void pr(const vector<T>& x);
    template<class T> void pr(const set<T>& x);
    template<class T1, class T2> void pr(const map<T1,T2>& x);
 
    template<class T> void pr(const T& x) { cout << x; }
    template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) { 
        pr(first); pr(rest...); 
    }
 
    template<class T1, class T2> void pr(const pair<T1,T2>& x) { 
        pr("{",x.f,", ",x.s,"}"); 
    }
    template<class T> void prContain(const T& x) {
        pr("{");
        bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0; // const needed for vector<bool>
        pr("}");
    }
    template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
    template<class T> void pr(const vector<T>& x) { prContain(x); }
    template<class T> void pr(const set<T>& x) { prContain(x); }
    template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
    
    void ps() { pr("\n"); }
    template<class Arg> void ps(const Arg& first) { 
        pr(first); ps(); // no space at end of line
    }
    template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) { 
        pr(first," "); ps(rest...); // print w/ spaces
    }
}
 
using namespace output;
 
namespace io {
    void setIn(string s) { freopen(s.c_str(),"r",stdin); }
    void setOut(string s) { freopen(s.c_str(),"w",stdout); }
    void setIO(string s = "") {
        ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
        if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
    }
}
 
using namespace io;
 
template<class T> T invGeneral(T a, T b) {
    a %= b; if (a == 0) return b == 1 ? 0 : -1;
    T x = invGeneral(b,a); 
    return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}
 
template<class T> struct modular {
    T val; 
    explicit operator T() const { return val; }
    modular() { val = 0; }
    modular(const ll& v) { 
        val = (-MOD <= v && v <= MOD) ? v : v % MOD;
        if (val < 0) val += MOD;
    }
    
    friend ostream& operator<<(ostream& os, const modular& a) { return os << a.val; }
    friend bool operator==(const modular& a, const modular& b) { return a.val == b.val; }
    friend bool operator!=(const modular& a, const modular& b) { return !(a == b); }
    friend bool operator<(const modular& a, const modular& b) { return a.val < b.val; }
 
    modular operator-() const { return modular(-val); }
    modular& operator+=(const modular& m) { if ((val += m.val) >= MOD) val -= MOD; return *this; }
    modular& operator-=(const modular& m) { if ((val -= m.val) < 0) val += MOD; return *this; }
    modular& operator*=(const modular& m) { val = (ll)val*m.val%MOD; return *this; }
    friend modular pow(modular a, ll p) {
        modular ans = 1; for (; p; p /= 2, a *= a) if (p&1) ans *= a;
        return ans;
    }
    friend modular inv(const modular& a) { 
        auto i = invGeneral(a.val,MOD); assert(i != -1);
        return i;
    } // equivalent to return exp(b,MOD-2) if MOD is prime
    modular& operator/=(const modular& m) { return (*this) *= inv(m); }
    
    friend modular operator+(modular a, const modular& b) { return a += b; }
    friend modular operator-(modular a, const modular& b) { return a -= b; }
    friend modular operator*(modular a, const modular& b) { return a *= b; }
    
    friend modular operator/(modular a, const modular& b) { return a /= b; }
};
 
typedef modular<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;
 
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
 
int N,A[MX]; // ind[MX],ori;
ll K, ans[MX];
 
vector<vi> cyc;
array<int,3> CYC[MX];
int vis[MX];
 
int par(int a, ll b) {
	assert(b >= CYC[a][2]);
	b -= CYC[a][2];
	int ind = (CYC[a][1]+b)%sz(cyc[CYC[a][0]]);
	return cyc[CYC[a][0]][ind];
}
 
void dfs(int a, int b) {
	if (vis[a]) {
		if (vis[a] != b) return;
		array<int,3> lst = {sz(cyc),0,0}; cyc.pb({});
		while (CYC[a][0] == -1) {
			CYC[a] = lst; cyc.back().pb(a);
			lst[1] ++; a = A[a];
		}
		return;
	}
	vis[a] = b; dfs(A[a],b);
	if (CYC[a][0] == -1) CYC[a] = {CYC[A[a]][0],CYC[A[a]][1],CYC[A[a]][2]+1};
}
 
vi adj[MX];
int dist[MX],ind[MX];
int special;
vl cum[MX];
vi path;
 
void genInd(int x) {
	trav(t,adj[x]) if (ind[t] == MOD) {
		ind[t] = ind[x];
		genInd(t);
	}
}

void ad(int ind, ll L, ll R) {
	// FOR(i,L,R+1) ans[cyc[ind][i%sz(cyc[ind])]] ++;
	ll tot = (R-L+1)/sz(cyc[ind]);
	cum[ind][0] += tot; R -= tot*sz(cyc[ind]);
	ll z = L/sz(cyc[ind]); L -= z*sz(cyc[ind]), R -= z*sz(cyc[ind]);
	cum[ind][L] ++;
	if (R+1 < sz(cyc[ind])) cum[ind][R+1] --;
	else cum[ind][0] ++, cum[ind][R+1-sz(cyc[ind])] --;
}

void init() {
    setIO(); re(N,K); 
    FOR(i,1,N+1) {
    	re(A[i]);
    	adj[A[i]].pb(i);
    	CYC[i] = {-1,-1,-1}; // cycle, position, dist
    }
    FOR(i,1,N+1) if (!vis[i]) dfs(i,i);
    FOR(i,1,N+1) dist[i] = -1, ind[i] = MOD;
    
    int cur = 1, lst = 0;
    while (dist[cur] == -1) {
    	dist[cur] = ind[cur] = lst++;
    	if (CYC[cur][2] == 0) ind[cur] = CYC[1][2];
    	path.pb(cur);
    	cur = A[cur];
    }
    F0R(i,sz(path)) genInd(path[i]);
    ans[par(1,K)] += (ll)N*(N-sz(path));
    F0R(i,sz(cyc)) cum[i].rsz(sz(cyc[i]));
    // FOR(i,1,N+1) ps("HA",i,ind[i]);
    FOR(i,1,N+1) {
    	int lo = 1, hi = min(sz(path),ind[i]); 
    	lo += CYC[i][2], hi += CYC[i][2];
    	// ps("??",i,lo,hi);
    	ad(CYC[i][0],CYC[i][1]+K-hi,CYC[i][1]+K-lo);
    }
    F0R(i,sz(cyc)) {
    	F0R(j,sz(cyc[i])) {
    		if (j) cum[i][j] += cum[i][j-1];
    		ans[cyc[i][j]] += cum[i][j];
    	}
    }
}
 
vi v;
int lst[MX];
 
void rdfs(int x) {
	v.pb(x); lst[x] = special;
	int rem = (K-dist[special])%sz(v);
	if (rem == 0) ans[v[rem]] ++;
	else ans[v[sz(v)-rem]] ++;
	trav(t,adj[x]) if (t != special) rdfs(t);
	v.pop_back();
}
 
void process() {
	// ps("HUH",special,dist[special]); exit(0);
	rdfs(special);
	// FOR(i,1,N+1) if (lst[i] != special) ans[par(i,K-dist[special]-1)] ++;
}
 
int main() {
	init();
    trav(t,path) {
    	special = t;
    	process();
    }
    FOR(i,1,N+1) ps(ans[i]);
    exit(0);
}
 
/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?), set tle
    * do smth instead of nothing and stay organized
*/

Compilation message

space_pirate.cpp: In function 'void io::setIn(std::__cxx11::string)':
space_pirate.cpp:113:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                            ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
space_pirate.cpp: In function 'void io::setOut(std::__cxx11::string)':
space_pirate.cpp:114:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                             ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 6 ms 5112 KB Output is correct
2 Correct 7 ms 5112 KB Output is correct
3 Correct 6 ms 5084 KB Output is correct
4 Correct 7 ms 5112 KB Output is correct
5 Correct 7 ms 5112 KB Output is correct
6 Correct 6 ms 5112 KB Output is correct
7 Correct 7 ms 5112 KB Output is correct
8 Correct 6 ms 5112 KB Output is correct
9 Correct 6 ms 5112 KB Output is correct
10 Correct 6 ms 5112 KB Output is correct
11 Correct 6 ms 5112 KB Output is correct
12 Correct 7 ms 5112 KB Output is correct
13 Correct 7 ms 5112 KB Output is correct
14 Correct 7 ms 5112 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 5112 KB Output is correct
2 Correct 7 ms 5112 KB Output is correct
3 Correct 6 ms 5084 KB Output is correct
4 Correct 7 ms 5112 KB Output is correct
5 Correct 7 ms 5112 KB Output is correct
6 Correct 6 ms 5112 KB Output is correct
7 Correct 7 ms 5112 KB Output is correct
8 Correct 6 ms 5112 KB Output is correct
9 Correct 6 ms 5112 KB Output is correct
10 Correct 6 ms 5112 KB Output is correct
11 Correct 6 ms 5112 KB Output is correct
12 Correct 7 ms 5112 KB Output is correct
13 Correct 7 ms 5112 KB Output is correct
14 Correct 7 ms 5112 KB Output is correct
15 Correct 13 ms 5240 KB Output is correct
16 Correct 8 ms 5240 KB Output is correct
17 Correct 18 ms 5244 KB Output is correct
18 Correct 409 ms 5644 KB Output is correct
19 Correct 111 ms 5496 KB Output is correct
20 Correct 211 ms 5632 KB Output is correct
21 Correct 228 ms 5656 KB Output is correct
22 Correct 76 ms 5496 KB Output is correct
23 Correct 218 ms 5752 KB Output is correct
24 Correct 53 ms 5496 KB Output is correct
25 Correct 7 ms 5240 KB Output is correct
26 Correct 416 ms 5680 KB Output is correct
27 Correct 76 ms 5368 KB Output is correct
28 Correct 121 ms 5368 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 63 ms 14588 KB Output is correct
2 Execution timed out 2069 ms 22776 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 5112 KB Output is correct
2 Correct 7 ms 5112 KB Output is correct
3 Correct 6 ms 5084 KB Output is correct
4 Correct 7 ms 5112 KB Output is correct
5 Correct 7 ms 5112 KB Output is correct
6 Correct 6 ms 5112 KB Output is correct
7 Correct 7 ms 5112 KB Output is correct
8 Correct 6 ms 5112 KB Output is correct
9 Correct 6 ms 5112 KB Output is correct
10 Correct 6 ms 5112 KB Output is correct
11 Correct 6 ms 5112 KB Output is correct
12 Correct 7 ms 5112 KB Output is correct
13 Correct 7 ms 5112 KB Output is correct
14 Correct 7 ms 5112 KB Output is correct
15 Correct 13 ms 5240 KB Output is correct
16 Correct 8 ms 5240 KB Output is correct
17 Correct 18 ms 5244 KB Output is correct
18 Correct 409 ms 5644 KB Output is correct
19 Correct 111 ms 5496 KB Output is correct
20 Correct 211 ms 5632 KB Output is correct
21 Correct 228 ms 5656 KB Output is correct
22 Correct 76 ms 5496 KB Output is correct
23 Correct 218 ms 5752 KB Output is correct
24 Correct 53 ms 5496 KB Output is correct
25 Correct 7 ms 5240 KB Output is correct
26 Correct 416 ms 5680 KB Output is correct
27 Correct 76 ms 5368 KB Output is correct
28 Correct 121 ms 5368 KB Output is correct
29 Correct 63 ms 14588 KB Output is correct
30 Execution timed out 2069 ms 22776 KB Time limit exceeded
31 Halted 0 ms 0 KB -