제출 #1325923

#제출 시각아이디문제언어결과실행 시간메모리
1325923perchuts캥거루 (CEOI16_kangaroo)C++20
100 / 100
462 ms477796 KiB
#include <bits/stdc++.h> #define all(x) x.begin(), x.end() #define sz(x) (int) x.size() #define pb push_back #define _ ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL); #define int long long //#define gato using namespace std; using ll = long long; using ull = unsigned long long; using ii = pair<int,int>; using iii = tuple<int,int,int>; const int inf = 2e9+1; const int mod = 1e9+7; const int maxn = 3e5+100; template<typename X, typename Y> bool ckmin(X& x, const Y& y) { return (y < x) ? (x=y,1):0; } template<typename X, typename Y> bool ckmax(X& x, const Y& y) { return (x < y) ? (x=y,1):0; } mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int rnd(int l, int r) { uniform_int_distribution<int> uid(l, r); return uid(rng); } int ncr[2005][2005]; int n3(int n, int a, int b) { if (n == 2) return 1; if (a > b) swap(a, b); vector f(n+1, vector(n+1, vector(2, 0LL))); vector s(n+1, vector(n+1, vector(2, 0LL))); for (int i = 1; i <= n; ++i) { for (int j = 1; j <= i; ++j) { if (i == 1) { f[i][i][1] = s[i][i][1] = 1; continue; } f[i][j][0] = s[i-1][j-1][1]; f[i][j][1] = (s[i-1][i-1][0] - s[i-1][j-1][0] + mod) % mod; s[i][j][0] = (s[i][j-1][0] + f[i][j][0]) % mod; s[i][j][1] = (s[i][j-1][1] + f[i][j][1]) % mod; } } if (b == n) return (f[n-1][a][0] + f[n-1][a][1]) % mod; int ans = 0; for (int s1 = 1; s1 <= n-2; ++s1) { int s2 = n-1-s1; for (int i1 = 1; i1 <= min(a, s1); ++i1) { for (int i2 = max(0LL, b-i1-s2); i1 + i2 <= s1 and i2 < b-a; ++i2) { int j = b-i1-i2; int ways = ncr[a-1][i1-1] * ncr[b-a-1][i2] % mod * ncr[n-1-b][s2-j] % mod; if (n & 1) ways = ways * ((f[s1][i1][0] * f[s2][j][0]) % mod + (f[s1][i1][1] * f[s2][j][1]) % mod) % mod; else ways = ways * ((f[s1][i1][1] * f[s2][j][0]) % mod + (f[s1][i1][0] * f[s2][j][1]) % mod) % mod; ans = (ans + ways) % mod; } } } return ans; } int solve(int N, int a, int b) { if (a > b) swap(a, b); // A[n][i][j], i > j? // A[n][i][j] = // A[n][i][j], D[n][i][j] // A[n][i][j]: primeiro movimento de subida. // A[n][i][j] += D[n-1][k][j-1], i <= k <= n-1. // D[n][i][j] += A[n-1][k][j-1] 1 <= k < i // A[n][i][j] = D[n][n+1-i][n+1-j] // A[n][i][j] = (D[n-1][k][j-1], i <= k < j-1) + (D[n-1][k][j-1], k >= j) // // A[n][i][j] = (D[n-1][k][j-1], i <= k < j-1) + (A[n-1][n-k][n-j+1], k >= j) // quero A[n][a][b] + D[n][a][b] = X[n][a][b] // X[n][i][j] = A[n][i][j] + D[n][i][j] // Y[n][i][j] = A[n][i][j] - D[n][i][j] // X[n][i][j] (i < j) // X[n][i][j] = (D[n-1][k][j-1], i <= k <= n-1, j-1 != k) + (A[n-1][k][j-1] 1 <= k < i) // X[n][i][j] = (D[n-1][k][j-1], j <= k <= n-1) + (D[n-1][k][j-1], i <= k < j-1) + (A[n-1][k][j-1] 1 <= k < i) // X[n][i][j] = (D[n-1][k][j-1], k \in {1, ..., n-1} \ {j}) + Y[n-1][k][j-1], 1 <= k < i // gostaria de uma dependencia de X em X! como fazer isso? eh possivel?? // // A[n][i][j] = A[n][i-1][j] - D[n-1][i-1][j-1] // D[n][i][j] = D[n][i-1][j] + A[n-1][i-1][j-1] // // X[n][i][j] = A[n][i-1][j] - D[n-1][i-1][j-1] + D[n][i-1][j] + A[n-1][i-1][j-1] // // X[n][i][j] = X[n][i-1][j] + Y[n-1][i-1][j-1] // Y[n][i][j] = Y[n][i-1][j] - X[n-1][i-1][j-1] // // Y[n-1][i-1][j-1] = Y[n-1][i-2][j-1] - X[n-2][i-2][j-2] // X[n][i-1][j] = X[n][i-2][j] + Y[n-1][i-2][j-1] // X[n][i-1][j] - Y[n-1][i-1][j-1] = X[n][i-2][j] + X[n-2][i-2][j-2] // Y[n-1][i-1][j-1] = X[n][i-1][j] - X[n][i-2][j] - X[n-2][i-2][j-2] // // X[n][i][j] = 2*X[n][i-1][j] - X[n][i-2][j] - X[n-2][i-2][j-2] // -> supondo n >= 3, i >= 3 vector f(N+1, vector(N+1, vector(2, 0LL))); vector s(N+1, vector(N+1, vector(2, 0LL))); for (int i = 1; i <= N; ++i) { for (int j = 1; j <= i; ++j) { if (i == 1) { f[i][i][1] = s[i][i][1] = 1; continue; } f[i][j][0] = s[i-1][j-1][1]; f[i][j][1] = (s[i-1][i-1][0] - s[i-1][j-1][0] + mod) % mod; s[i][j][0] = (s[i][j-1][0] + f[i][j][0]) % mod; s[i][j][1] = (s[i][j-1][1] + f[i][j][1]) % mod; } } vector X(N+1, vector(N+1, 0)); int d = N-b; for (int n = 2; n <= N; ++n) { int j = n-d; for (int i = 1; i < j; ++i) { if (i == 1) { // X[n][1][j] = A[n][1][j] = D[n-1][1][j-1] + D[n-1][2][j-1] + ... + D[n-1][n-1][j-1] X[n][i] = (n % 2 ? f[n-1][n+1-j][0] : f[n-1][n+1-j][1]); } else if (i == 2) { X[n][i] = (X[n-1][1] + X[n][1]) % mod; // X[n][2][j] = A[n][2][j] + D[n][2][j] = A[n][2][j] + A[n-1][1][j-1] = A[n][2][j] + X[n-1][1][j-1] // A[n][2][j] = D[n-1][2][j-1] + D[n-1][3][j-1] + ... + D[n-1][n-1][j-1] // A[n][2][j] = A[n][1][j] - D[n][1][j] } else { ll k = 2 * X[n][i-1]; k -= X[n][i-2], k -= X[n-2][i-2]; k += 2 * mod; k %= mod; X[n][i] = k; } assert(X[n][i] < mod); assert(X[n][i] >= 0); } } return X[N][a]; } int brute(int n, int a, int b) { vector<int> p(n); iota(all(p), 1); int ans = 0; do { bool ok = (p[0] == a and p[n-1] == b); for (int i = 2; i < n; ++i) ok &= (p[i] < p[i-1]) != (p[i-1] < p[i-2]); if (ok) ans++; } while(next_permutation(all(p))); return ans; } int32_t main() {_ for (int i = 0; i <= 2000; ++i) for (int j = 0; j <= i; ++j) { if (j == 0 or j == i) ncr[i][j] = 1; else ncr[i][j] = (ncr[i-1][j] + ncr[i-1][j-1]) % mod; } #ifndef gato int n, a, b; cin >> n >> a >> b; cout << solve(n, a, b) << endl; #else int t = 1; while (true) { int n = rnd(2, 100), a = rnd(1, n-1), b = rnd(a+1, n); int my = solve(n, a, b), ans = n3(n, a, b); if (my != ans) { cout << "Wrong answer on test " << t << endl; cout << n << " " << a << " " << b << endl; cout << "Solve: " << my << endl; cout << "Brute: " << ans << endl; exit(0); } cout << "Accepted on test " << t++ << endl; } #endif }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...