제출 #1320199

#제출 시각아이디문제언어결과실행 시간메모리
1320199MunkhErdene장애물 (IOI25_obstacles)C++17
23 / 100
2113 ms516460 KiB
#include<bits/stdc++.h> #include "obstacles.h" using namespace std; #define ll long long #define pb push_back #define ff first #define ss second #define _ << " " << #define yes cout<<"YES\n" #define no cout<<"NO\n" #define ull unsigned long long #define lll __int128 #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() #define BlueCrowner ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); #define FOR(i, a, b) for (ll i = (a); i < (b); i++) #define FORD(i, a, b) for (ll i = (a); i >= (b); i--) const ll mod = 1e9 + 7; const ll mod1 = 998244353; const ll naim = 1e9; const ll max_bit = 60; const ull tom = ULLONG_MAX; const ll MAXN = 2e6 + 5; const ll LOG = 20; const ll NAIM = 1e18; const ll N = 2e6 + 5; // ---------- GCD ---------- ll gcd(ll a, ll b) { while (b) { a %= b; swap(a, b); } return a; } // ---------- LCM ---------- ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } // ---------- Modular Exponentiation ---------- ll modpow(ll a, ll b, ll m = mod) { ll c = 1; a %= m; while (b > 0) { if (b & 1) c = c * a % m; a = a * a % m; b >>= 1; } return c; } // ---------- Modular Inverse (Fermat’s Little Theorem) ---------- ll modinv(ll a, ll m = mod) { return modpow(a, m - 2, m); } // ---------- Factorials and Inverse Factorials ---------- ll fact[N], invfact[N]; void pre_fact(ll n = N-1, ll m = mod) { fact[0] = 1; for (ll i = 1; i <= n; i++) fact[i] = fact[i-1] * i % m; invfact[n] = modinv(fact[n], m); for (ll i = n; i > 0; i--) invfact[i-1] = invfact[i] * i % m; } // ---------- nCr ---------- ll nCr(ll n, ll r, ll m = mod) { if (r < 0 || r > n) return 0; return fact[n] * invfact[r] % m * invfact[n-r] % m; } // ---------- Sieve of Eratosthenes ---------- vector<ll> primes; bool is_prime[N]; void sieve(ll n = N-1) { fill(is_prime, is_prime + n + 1, true); is_prime[0] = is_prime[1] = false; for (ll i = 2; i * i <= n; i++) { if (is_prime[i]) { for (ll j = i * i; j <= n; j += i) is_prime[j] = false; } } for (ll i = 2; i <= n; i++) if (is_prime[i]) primes.pb(i); } vector<int> t, h; struct UnionFind { vector<int> par, sz; UnionFind(int n) { par.resize(n); sz.resize(n, 1); iota(all(par), 0); } int find(int a) { if(par[a] == a) return a; return par[a] = find(par[a]); } int unite(int a, int b) { a = find(a); b = find(b); if(a == b) return 0; if(sz[a] < sz[b]) swap(a, b); par[b] = a; sz[a] += sz[b]; return 1; } }; map<pair<ll, ll>, ll> id; UnionFind dsu(MAXN); void initialize(vector<int> T, vector<int> H) { t = T; h = H; ll cur = 0; FOR(i, 0, t.size()) { FOR(j, 0, h.size()) { id[{i, j}] = cur++; } } FOR(i, 1, h.size()) { if(t[0] > h[i] && t[0] > h[i - 1]) { dsu.unite(id[{0, i - 1}], id[{0, i}]); } } FOR(i, 1, t.size()) { if(t[i] > h[0] && t[i - 1] > h[0]) { dsu.unite(id[{i - 1, 0}], id[{i, 0}]); } } FOR(i, 1, t.size()) { FOR(j, 1, h.size()) { if(t[i] > h[j] && t[i] > h[j - 1]) { dsu.unite(id[{i, j - 1}], id[{i, j}]); } if(t[i] > h[j] && t[i - 1] > h[j]) { dsu.unite(id[{i, j}], id[{i - 1, j}]); } } } } bool can_reach(int l, int r, int s, int d) { if(dsu.find(id[{0, s}]) == dsu.find(id[{0, d}])) return 1; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...