Submission #131929

# Submission time Handle Problem Language Result Execution time Memory
131929 2019-07-18T04:40:00 Z 윤교준(#3190) Fences (JOI18_fences) C++14
100 / 100
630 ms 1244 KB
#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define sz(V) ((int)(V).size())
#define allv(V) ((V).begin()),((V).end())
#define befv(V) ((V)[(sz(V)-2)])
#define sorv(V) sort(allv(V))
#define revv(V) reverse(allv(V))
#define univ(V) (V).erase(unique(allv(V)),(V).end())
#define clv(V) (V).clear()
#define upmin(a,b) (a)=min((a),(b))
#define upmax(a,b) (a)=max((a),(b))
#define rb(x) ((x)&(-(x)))
#define INF (0x3f3f3f3f)
#define INFLL (0x3f3f3f3f3f3f3f3fll)
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ld, ld> pdd;
const ld EPS = ld(1e-8)/2;
bool isZero(ld n) { return abs(n) < EPS; }
bool isSame(ld a, ld b) { return isZero(a-b); }
ld pw(ld n) { return n*n; }
ld size(pdd a) { return sqrt(pw(a.first) + pw(a.second)); }
int sign(ld n) { return isZero(n) ? 0 : (0 < n ? 1 : -1); }
const bool debug = 0;
 
struct Vec {
	Vec(ld x = 0, ld y = 0, ld z = 0) : x(x), y(y), z(z) {}
	ld x, y, z;
 
	bool operator == (const Vec& t) const {
		return isZero(x - t.x) && isZero(y - t.y) && isZero(z - t.z);
	}
	Vec operator + (const Vec& t) const { return Vec(x+t.x, y+t.y, z+t.z); }
	Vec operator - (const Vec& t) const { return Vec(x-t.x, y-t.y, z-t.z); }
	Vec operator * (const ld& t) const { return Vec(x*t, y*t, z*t); }
	Vec operator / (const ld& t) const { return Vec(x/t, y/t, z/t); }
	Vec operator * (const Vec& t) const { return Vec(y*t.z - z*t.y, z*t.x - x*t.z, x*t.y - y*t.x); }
	ld operator / (const Vec& t) const { return x*t.x + y*t.y + z*t.z; }
	ld len() const { return sqrt(x*x + y*y + z*z); }
	ld pwlen() const { return x*x + y*y + z*z; }
	void norm() {
		const ld L = len();
		if(!isZero(L)) *this = *this / L;
	}
};
typedef vector<Vec> Cec;
ld ccw(const Vec& a, const Vec& b, const Vec& c) { return ((b-a) * (c-a)).len(); }
// a -- b -- c : True, Otherwise : False
bool isbet(Vec a, Vec b, Vec c) {
	if(a == b || b == c) return true;
 
	ld x = (b-a).pwlen(), y = (c-b).pwlen(), z = (c-a).pwlen();
	if(!isZero(x*y*4 - pw(x+y-z))) return false;
 
	if(a.x < c.x && (b.x < a.x-EPS || c.x+EPS < b.x)) return false;
	if(a.x > c.x && (b.x < c.x-EPS || a.x+EPS < b.x)) return false;
	if(a.y < c.y && (b.y < a.y-EPS || c.y+EPS < b.y)) return false;
	if(a.y > c.y && (b.y < c.y-EPS || a.y+EPS < b.y)) return false;
	return true;
}
bool isco(Vec a, Vec b, Vec c) { return isZero(ccw(a, b, c)); }
pair<Vec, bool> intersect(Vec a, Vec b, Vec c, Vec d) {
	Vec u = b-a, v = d-c, z = c-a, vz = v*z, vu = v*u;
	if(isZero(vu.len())) return {Vec(), false};
	return {a + u * (vz.len() / vu.len() * sign(vz / vu)), true};
}
Vec project(Vec a, Vec b, Vec c) { b.norm(); return b * ((c-a) / b) + a; }
 
const int MAXN = 205;
 
double D[MAXN*2][MAXN*2];
 
Vec A[MAXN], B[MAXN];
int SPI[MAXN];
 
const int CPV[28][5] = {
	{1, 0}, {1, 1}, {1, 2}, {1, 3},
	{2, 0, 1}, {2, 1, 2}, {2, 2, 3}, {2, 3, 0},
	{2, 1, 0}, {2, 2, 1}, {2, 3, 2}, {2, 0, 3},
	{3, 0, 1, 2}, {3, 1, 2, 3}, {3, 2, 3, 0}, {3, 3, 0, 1},
	{3, 2, 1, 0}, {3, 3, 2, 1}, {3, 0, 3, 2}, {3, 1, 0, 3},
	{4, 0, 1, 2, 3}, {4, 1, 2, 3, 0}, {4, 2, 3, 0, 1}, {4, 3, 0, 1, 2},
	{4, 3, 2, 1, 0}, {4, 2, 1, 0, 3}, {4, 1, 0, 3, 2}, {4, 0, 3, 2, 1}
};
Vec BP[4], CP[4];
Vec lv;
 
double Ans;
int N, C;
 
bool isp(Vec a, Vec b) {
	if(a == b) return true;
	Vec ret; bool chk;
	for(int i = 0; i < 4; i++) {
		tie(ret, chk) = intersect(a, b, BP[i], BP[(i+1)%4]);
		if(chk && isbet(BP[i], ret, BP[(i+1)%4]) && isbet(a, ret, b))
			return false;
	}
	return true;
}
bool ispl(Vec a, Vec b) {
	if(a == b) return false;
	Vec ret; bool chk;
	tie(ret, chk) = intersect(a, b, Vec(), lv);
	return chk && EPS < ret.x && EPS < ret.y && isbet(a, ret, b);
}
 
 
void upd(Cec V, ld &reta, ld &retb) {
	ld ret = 0;
	bool flag = false;
 
	for(int i = 1, n = sz(V); i < n; i++) {
		if(!isp(V[i-1], V[i])) return;
		flag ^= ispl(V[i-1], V[i]);
		ret += (V[i] - V[i-1]).len();
	}
 
	if(flag) upmin(retb, ret);
	else upmin(reta, ret);
}
void upd1(Vec a, Vec b, Vec c, ld &reta, ld &retb) {
	Vec p = project(b, c-b, a);
	if(!isbet(b, p, c)) return;
	upd(Cec{a, p}, reta, retb);
}
void f(Vec ps, Vec pe, Vec qs, Vec qe, ld &reta, ld &retb, bool iss) {
	reta = retb = INFLL;
 
	if(!iss) {
		upd(Cec{ps, qs}, reta, retb);
		upd(Cec{ps, qe}, reta, retb);
		upd(Cec{pe, qs}, reta, retb);
		upd(Cec{pe, qe}, reta, retb);
 
		upd1(ps, qs, qe, reta, retb);
		upd1(pe, qs, qe, reta, retb);
		upd1(qs, ps, pe, reta, retb);
		upd1(qe, ps, pe, reta, retb);
	}
 
	for(int cpvi = 0, cpvsz; cpvi < 28; cpvi++) {
		cpvsz = CPV[cpvi][0];
		if(iss && cpvsz < 3) continue;
 
		Cec PV, QV;
		PV.eb(ps); PV.eb(pe); QV.eb(qs); QV.eb(qe);
 
		{
			Vec p = project(ps, pe-ps, CP[CPV[cpvi][1]]);
			if(isbet(ps, p, pe)) PV.eb(p);
		}
		{
			Vec p = project(qs, qe-qs, CP[CPV[cpvi][cpvsz]]);
			if(isbet(qs, p, qe)) QV.eb(p);
		}
 
		Vec ph, qh;
 
		{
			ld pl = INFLL;
			for(auto &p : PV) {
				ld t = (p - CP[CPV[cpvi][1]]).len();
				if(pl <= t) continue;
				ph = p; pl = t;
			}
		}
		{
			ld ql = INFLL;
			for(auto &p : QV) {
				ld t = (p - CP[CPV[cpvi][cpvsz]]).len();
				if(ql <= t) continue;
				qh = p; ql = t;
			}
		}
 
		Cec Path;
		Path.eb(ph);
		for(int i = 1; i <= cpvsz; i++)
			Path.eb(CP[CPV[cpvi][i]]);
		Path.eb(qh);
		upd(Path, reta, retb);
	}
}
 
int main() {
	ios::sync_with_stdio(false);
	srand(20010610);
	lv.x = ld(rand() % 708790 + 337) / ld(rand() % 900 + 755);
	lv.y = ld(rand() % 632048 + 469) / ld(rand() % 908 + 147);
	//swap(lv.x, lv.y);
	//lv.norm();
 
	//printf("LV %Lf %Lf\n", lv.x, lv.y);
 
	cin >> N >> C;
	for(int i = 1; i <= N; i++)
		cin >> A[i].x >> A[i].y >> B[i].x >> B[i].y;
 
	{
		ld CEPS = ld(1e-5);
		BP[0] = Vec(ld(C) - CEPS, ld(C) - CEPS);
		BP[1] = Vec(ld(C) - CEPS, ld(-C) + CEPS);
		BP[2] = Vec(ld(-C) + CEPS, ld(-C) + CEPS);
		BP[3] = Vec(ld(-C) + CEPS, ld(C) - CEPS);
 
		CP[0] = Vec(C, C);
		CP[1] = Vec(C, -C);
		CP[2] = Vec(-C, -C);
		CP[3] = Vec(-C, C);
	}
 
	{
		ld CEPS = ld(1e-4)/2;
		for(int i = N; i; i--) {
			Vec a = A[i], b = B[i];
			if(!ispl(a, b)) continue;
 
			Vec p = intersect(a, b, Vec(), lv).first;
			Vec v = p-a; v.norm(); v = v * CEPS;
 
			if(debug) printf("YES %d :: %Lf %Lf\n", i, v.x, v.y);
 
			N++; A[N] = a; B[N] = p-v;
			A[i] = p+v; B[i] = b;
 
			SPI[i] = N;
		}
	}
 
	if(debug) {
		puts("TEST LV");
		for(int i = 1; i <= N; i++) {
			Vec a = A[i], b = B[i];
			if(!ispl(a, b)) continue;
 
			Vec p = intersect(a, b, Vec(), lv).first;
 
			printf("FUCKED at i=%d :: %Lf %Lf / %Lf %Lf :: %Lf %Lf\n", i, a.x, a.y, b.x, b.y, p.x, p.y);
		}
	}
 
	for(int i = 1; i <= N; i++) for(int j = i; j <= N; j++) {
		ld a, b; f(A[i], B[i], A[j], B[j], a, b, i == j);
		D[i*2][j*2] = D[i*2-1][j*2-1] = D[j*2][i*2] = D[j*2-1][i*2-1] = a;
		D[i*2-1][j*2] = D[i*2][j*2-1] = D[j*2-1][i*2] = D[j*2][i*2-1] = b;
	}
 
	for(int i = 1; i <= N; i++) {
		D[i*2][i*2] = D[i*2-1][i*2-1] = 0;
 
		int t = SPI[i];
		if(t) D[i*2][t*2-1] = D[i*2-1][t*2] = D[t*2][i*2-1] = D[t*2-1][i*2] = 0;
	}
 
	for(int k = 1; k <= N*2; k++) for(int i = 1; i <= N*2; i++) for(int j = 1; j <= N*2; j++)
		upmin(D[i][j], D[i][k] + D[k][j]);
	
	Ans = ld(C) * 8;
	for(int i = 1; i <= N; i++) upmin(Ans, D[i*2][i*2-1]);
 
	printf("%.10lf\n", Ans);
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 632 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 376 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 2 ms 404 KB Output is correct
8 Correct 2 ms 376 KB Output is correct
9 Correct 2 ms 448 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 2 ms 380 KB Output is correct
13 Correct 2 ms 376 KB Output is correct
14 Correct 2 ms 376 KB Output is correct
15 Correct 2 ms 376 KB Output is correct
16 Correct 2 ms 380 KB Output is correct
17 Correct 2 ms 376 KB Output is correct
18 Correct 2 ms 376 KB Output is correct
19 Correct 2 ms 376 KB Output is correct
20 Correct 2 ms 376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 632 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 376 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 2 ms 404 KB Output is correct
8 Correct 2 ms 376 KB Output is correct
9 Correct 2 ms 448 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 2 ms 380 KB Output is correct
13 Correct 2 ms 376 KB Output is correct
14 Correct 2 ms 376 KB Output is correct
15 Correct 2 ms 376 KB Output is correct
16 Correct 2 ms 380 KB Output is correct
17 Correct 2 ms 376 KB Output is correct
18 Correct 2 ms 376 KB Output is correct
19 Correct 2 ms 376 KB Output is correct
20 Correct 2 ms 376 KB Output is correct
21 Correct 3 ms 376 KB Output is correct
22 Correct 4 ms 376 KB Output is correct
23 Correct 3 ms 444 KB Output is correct
24 Correct 3 ms 380 KB Output is correct
25 Correct 4 ms 376 KB Output is correct
26 Correct 5 ms 380 KB Output is correct
27 Correct 3 ms 376 KB Output is correct
28 Correct 3 ms 376 KB Output is correct
29 Correct 4 ms 376 KB Output is correct
30 Correct 4 ms 376 KB Output is correct
31 Correct 4 ms 376 KB Output is correct
32 Correct 4 ms 376 KB Output is correct
33 Correct 4 ms 376 KB Output is correct
34 Correct 4 ms 376 KB Output is correct
35 Correct 5 ms 376 KB Output is correct
36 Correct 5 ms 380 KB Output is correct
37 Correct 3 ms 376 KB Output is correct
38 Correct 2 ms 376 KB Output is correct
39 Correct 4 ms 376 KB Output is correct
40 Correct 3 ms 376 KB Output is correct
41 Correct 2 ms 376 KB Output is correct
42 Correct 3 ms 376 KB Output is correct
43 Correct 3 ms 376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 632 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 376 KB Output is correct
4 Correct 2 ms 376 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 2 ms 376 KB Output is correct
7 Correct 2 ms 404 KB Output is correct
8 Correct 2 ms 376 KB Output is correct
9 Correct 2 ms 448 KB Output is correct
10 Correct 2 ms 376 KB Output is correct
11 Correct 2 ms 376 KB Output is correct
12 Correct 2 ms 380 KB Output is correct
13 Correct 2 ms 376 KB Output is correct
14 Correct 2 ms 376 KB Output is correct
15 Correct 2 ms 376 KB Output is correct
16 Correct 2 ms 380 KB Output is correct
17 Correct 2 ms 376 KB Output is correct
18 Correct 2 ms 376 KB Output is correct
19 Correct 2 ms 376 KB Output is correct
20 Correct 2 ms 376 KB Output is correct
21 Correct 3 ms 376 KB Output is correct
22 Correct 4 ms 376 KB Output is correct
23 Correct 3 ms 444 KB Output is correct
24 Correct 3 ms 380 KB Output is correct
25 Correct 4 ms 376 KB Output is correct
26 Correct 5 ms 380 KB Output is correct
27 Correct 3 ms 376 KB Output is correct
28 Correct 3 ms 376 KB Output is correct
29 Correct 4 ms 376 KB Output is correct
30 Correct 4 ms 376 KB Output is correct
31 Correct 4 ms 376 KB Output is correct
32 Correct 4 ms 376 KB Output is correct
33 Correct 4 ms 376 KB Output is correct
34 Correct 4 ms 376 KB Output is correct
35 Correct 5 ms 376 KB Output is correct
36 Correct 5 ms 380 KB Output is correct
37 Correct 3 ms 376 KB Output is correct
38 Correct 2 ms 376 KB Output is correct
39 Correct 4 ms 376 KB Output is correct
40 Correct 3 ms 376 KB Output is correct
41 Correct 2 ms 376 KB Output is correct
42 Correct 3 ms 376 KB Output is correct
43 Correct 3 ms 376 KB Output is correct
44 Correct 538 ms 1140 KB Output is correct
45 Correct 456 ms 1016 KB Output is correct
46 Correct 407 ms 1144 KB Output is correct
47 Correct 359 ms 1144 KB Output is correct
48 Correct 452 ms 1016 KB Output is correct
49 Correct 467 ms 1144 KB Output is correct
50 Correct 426 ms 1016 KB Output is correct
51 Correct 380 ms 1016 KB Output is correct
52 Correct 433 ms 1016 KB Output is correct
53 Correct 408 ms 1144 KB Output is correct
54 Correct 454 ms 1016 KB Output is correct
55 Correct 420 ms 1016 KB Output is correct
56 Correct 425 ms 1080 KB Output is correct
57 Correct 407 ms 1176 KB Output is correct
58 Correct 406 ms 1092 KB Output is correct
59 Correct 434 ms 1144 KB Output is correct
60 Correct 412 ms 1016 KB Output is correct
61 Correct 451 ms 1112 KB Output is correct
62 Correct 8 ms 376 KB Output is correct
63 Correct 7 ms 504 KB Output is correct
64 Correct 397 ms 1116 KB Output is correct
65 Correct 362 ms 1148 KB Output is correct
66 Correct 322 ms 1016 KB Output is correct
67 Correct 630 ms 1244 KB Output is correct
68 Correct 630 ms 1144 KB Output is correct
69 Correct 387 ms 1016 KB Output is correct
70 Correct 341 ms 1144 KB Output is correct
71 Correct 376 ms 1048 KB Output is correct
72 Correct 369 ms 1144 KB Output is correct