Submission #131297

# Submission time Handle Problem Language Result Execution time Memory
131297 2019-07-17T02:20:25 Z WannnabeIOI Werewolf (IOI18_werewolf) C++14
100 / 100
710 ms 79916 KB
#include "werewolf.h"
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> pi;
const int MAXN = 10 + 400000;
const int MAXT = 530000;

struct seg{
	int tree[MAXT], lim;
	void init(int n){
		fill(tree, tree + MAXT, -1e9);
		for(lim = 1; lim <= n; lim <<= 1);
	}
	void add(int x, int v){
		x += lim;
		tree[x] = max(tree[x], v);
		while(x > 1){
			x >>= 1;
			tree[x] = max(tree[2 * x], tree[2 * x + 1]);
		}
	}
	int query(int s, int e){
		s += lim;
		e += lim;
		int ret = -1e9;
		while(s < e){
			if(s % 2 == 1) ret = max(ret, tree[s++]);
			if(e % 2 == 0) ret = max(ret, tree[e--]);
			s >>= 1;
			e >>= 1;
		}
		if(s == e) ret = max(ret, tree[s]);
		return ret;
	}
}seg;

struct disj{
	int pa[MAXN];
	void init(int n){
		iota(pa, pa + n + 1, 0); //fills the members of pa with increasing numbers
	}
	int find(int x){
		return pa[x] = (pa[x] == x ? x : find(pa[x]));
	}
	bool uni(int p, int q){
		p = find(p);
		q = find(q);
		if(p > q) swap(p, q);
		if(p == q) return 0;
		pa[p] = q; return 1;
	}
}disj;

struct graph{
	vector<int> gph[MAXN];
	int din[MAXN], dout[MAXN], piv;
	void add_edge(int p, int q){
		gph[p].push_back(q);
	}
	void dfs(int x){
		din[x] = piv;
		if(gph[x].empty()) piv++;
		for(auto &i : gph[x]) dfs(i);
		dout[x] = piv;
	}
}g1, g2;

struct queries{
	int s, l, e, r;
	int rs, re, idx;
}qr[MAXN];

struct edges{ int s, e, x; }ed[MAXN];

vector<int> check_validity(int N, vector<int> X, vector<int> Y, vector<int> S, vector<int> E, vector<int> L, vector<int> R) {
	int M = X.size();
	int Q = S.size();
	for(int i=0; i<Q; i++) qr[i] = {S[i], L[i], E[i], R[i], -1, -1, i};
	// make first tree
	int vtx_num = N, ptr = 0;
	qr[Q].l = -1e9;
	disj.init(N * 2);
	for(int i=0; i<M; i++) ed[i] = {X[i], Y[i], min(X[i], Y[i])};
	sort(qr, qr + Q, [&](const queries &a, const queries &b){
		return a.l > b.l;
	});
	sort(ed, ed + M, [&](const edges &a, const edges &b){
		return a.x > b.x;
	});
	for(int i=0; i<=Q; i++){
		while(ptr < M && ed[ptr].x >= qr[i].l){
			int l = disj.find(ed[ptr].s);
			int r = disj.find(ed[ptr].e);
			ptr++;
			if(l == r) continue;
			disj.uni(l, vtx_num);
			disj.uni(r, vtx_num);
			g1.add_edge(vtx_num, l);
			g1.add_edge(vtx_num, r);
			vtx_num++;
		}
		qr[i].rs = disj.find(qr[i].s);
	}
	// make second tree
	vtx_num = N, ptr = 0;
	qr[Q].r = 1e9;
	disj.init(N * 2);
	for(int i=0; i<M; i++) ed[i] = {X[i], Y[i], max(X[i], Y[i])};
	sort(qr, qr + Q, [&](const queries &a, const queries &b){
		return a.r < b.r;
	});
	sort(ed, ed + M, [&](const edges &a, const edges &b){
		return a.x < b.x;
	});
	for(int i=0; i<=Q; i++){
		while(ptr < M && ed[ptr].x <= qr[i].r){
			int l = disj.find(ed[ptr].s);
			int r = disj.find(ed[ptr].e);
			ptr++;
			if(l == r) continue;
			disj.uni(l, vtx_num);
			disj.uni(r, vtx_num);
			g2.add_edge(vtx_num, l);
			g2.add_edge(vtx_num, r);
			vtx_num++;
		}
		qr[i].re = disj.find(qr[i].e);
	}
	// both done
	g1.dfs(2 * N - 2);
	g2.dfs(2 * N - 2);
	vector<pi> points;
	vector<int> ans(Q);
	for(int i=0; i<N; i++) points.emplace_back(g1.din[i], g2.din[i]);
	sort(points.begin(), points.end());
	sort(qr, qr + Q, [&](const queries &a, const queries &b){
		return g1.dout[a.rs] < g1.dout[b.rs];
	});
	seg.init(N);
	ptr = 0;
	for(int i=0; i<Q; i++){
		while(ptr < N && points[ptr].first < g1.dout[qr[i].rs]){
			seg.add(points[ptr].second, points[ptr].first);
			ptr++;
		}
		if(seg.query(g2.din[qr[i].re], g2.dout[qr[i].re] - 1) >= g1.din[qr[i].rs]){
			ans[qr[i].idx] = 1;
		}
	}
	return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 22 ms 21240 KB Output is correct
2 Correct 25 ms 21244 KB Output is correct
3 Correct 22 ms 21240 KB Output is correct
4 Correct 25 ms 21240 KB Output is correct
5 Correct 25 ms 21244 KB Output is correct
6 Correct 21 ms 21244 KB Output is correct
7 Correct 26 ms 21240 KB Output is correct
8 Correct 21 ms 21240 KB Output is correct
9 Correct 21 ms 21240 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 21240 KB Output is correct
2 Correct 25 ms 21244 KB Output is correct
3 Correct 22 ms 21240 KB Output is correct
4 Correct 25 ms 21240 KB Output is correct
5 Correct 25 ms 21244 KB Output is correct
6 Correct 21 ms 21244 KB Output is correct
7 Correct 26 ms 21240 KB Output is correct
8 Correct 21 ms 21240 KB Output is correct
9 Correct 21 ms 21240 KB Output is correct
10 Correct 28 ms 22008 KB Output is correct
11 Correct 29 ms 22008 KB Output is correct
12 Correct 28 ms 21980 KB Output is correct
13 Correct 27 ms 22008 KB Output is correct
14 Correct 28 ms 22008 KB Output is correct
15 Correct 29 ms 22136 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 609 ms 69764 KB Output is correct
2 Correct 534 ms 72288 KB Output is correct
3 Correct 543 ms 70636 KB Output is correct
4 Correct 567 ms 69996 KB Output is correct
5 Correct 575 ms 69868 KB Output is correct
6 Correct 602 ms 69996 KB Output is correct
7 Correct 569 ms 69740 KB Output is correct
8 Correct 511 ms 72400 KB Output is correct
9 Correct 472 ms 70596 KB Output is correct
10 Correct 499 ms 69964 KB Output is correct
11 Correct 519 ms 69868 KB Output is correct
12 Correct 536 ms 69868 KB Output is correct
13 Correct 542 ms 72296 KB Output is correct
14 Correct 580 ms 72428 KB Output is correct
15 Correct 538 ms 72428 KB Output is correct
16 Correct 568 ms 72412 KB Output is correct
17 Correct 567 ms 69868 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 22 ms 21240 KB Output is correct
2 Correct 25 ms 21244 KB Output is correct
3 Correct 22 ms 21240 KB Output is correct
4 Correct 25 ms 21240 KB Output is correct
5 Correct 25 ms 21244 KB Output is correct
6 Correct 21 ms 21244 KB Output is correct
7 Correct 26 ms 21240 KB Output is correct
8 Correct 21 ms 21240 KB Output is correct
9 Correct 21 ms 21240 KB Output is correct
10 Correct 28 ms 22008 KB Output is correct
11 Correct 29 ms 22008 KB Output is correct
12 Correct 28 ms 21980 KB Output is correct
13 Correct 27 ms 22008 KB Output is correct
14 Correct 28 ms 22008 KB Output is correct
15 Correct 29 ms 22136 KB Output is correct
16 Correct 609 ms 69764 KB Output is correct
17 Correct 534 ms 72288 KB Output is correct
18 Correct 543 ms 70636 KB Output is correct
19 Correct 567 ms 69996 KB Output is correct
20 Correct 575 ms 69868 KB Output is correct
21 Correct 602 ms 69996 KB Output is correct
22 Correct 569 ms 69740 KB Output is correct
23 Correct 511 ms 72400 KB Output is correct
24 Correct 472 ms 70596 KB Output is correct
25 Correct 499 ms 69964 KB Output is correct
26 Correct 519 ms 69868 KB Output is correct
27 Correct 536 ms 69868 KB Output is correct
28 Correct 542 ms 72296 KB Output is correct
29 Correct 580 ms 72428 KB Output is correct
30 Correct 538 ms 72428 KB Output is correct
31 Correct 568 ms 72412 KB Output is correct
32 Correct 567 ms 69868 KB Output is correct
33 Correct 710 ms 70484 KB Output is correct
34 Correct 428 ms 56440 KB Output is correct
35 Correct 641 ms 72832 KB Output is correct
36 Correct 618 ms 70404 KB Output is correct
37 Correct 631 ms 71976 KB Output is correct
38 Correct 645 ms 70828 KB Output is correct
39 Correct 630 ms 74988 KB Output is correct
40 Correct 706 ms 79596 KB Output is correct
41 Correct 615 ms 71660 KB Output is correct
42 Correct 617 ms 70380 KB Output is correct
43 Correct 661 ms 76780 KB Output is correct
44 Correct 597 ms 72028 KB Output is correct
45 Correct 556 ms 75288 KB Output is correct
46 Correct 550 ms 74912 KB Output is correct
47 Correct 553 ms 72684 KB Output is correct
48 Correct 539 ms 72292 KB Output is correct
49 Correct 539 ms 72596 KB Output is correct
50 Correct 561 ms 72336 KB Output is correct
51 Correct 702 ms 79916 KB Output is correct
52 Correct 707 ms 79824 KB Output is correct