Submission #130832

#TimeUsernameProblemLanguageResultExecution timeMemory
130832xanthoElection Campaign (JOI15_election_campaign)C++17
100 / 100
330 ms31528 KiB
#include <algorithm> #include <iostream> #include <vector> class heavy_light { struct path { int u, v; int lca; long long value; }; enum class chain_value_type { children, vertex }; const int UNCHECKED = -1; const int ROOT = 0; // Standard root int num_vertices; std::vector<std::vector<int>> adj_list; std::vector<int> parent; // Parent of each vertex in rooted tree. std::vector<int> depth; // Depth of each vertex. std::vector<int> dfs_start; // Time when a vertex's DFS processing starts. Used to check for Ancestors std::vector<int> dfs_end; // Time when a vertex's DFS processing ends. Used to check for Ancestors. std::vector<int> subtree_size; // Number of vertices in subtree rooted at each vertex. std::vector<std::vector<int>> chains; // The i-th vector is the i-th chain std::vector<int> chain_index; // Which chain is a vertex part of? (Starts from 0) std::vector<int> position_in_chain; // How deep is a vertex in the chain? (0 is closest to the root) // DP Variables std::vector<std::vector<path>> lca_paths; // The i-th vector represents all paths that has i as the LCA std::vector<std::vector<long long>> cumulative_chain_children_memo; // The j-th index of the i-th vector represents the sum of the children's DP values for the j-th vertex and beyond within the i-th chain std::vector<std::vector<long long>> cumulative_chain_vertex_memo; // Exactly the same as above, but stores the vertex's DP value instead of the children's void dfs(int u, int& time) { dfs_start[u] = time; subtree_size[u] = 1; for (int v : adj_list[u]) { if (v == parent[u]) { continue; } parent[v] = u; depth[v] = depth[u] + 1; ++time; dfs(v, time); subtree_size[u] += subtree_size[v]; } dfs_end[u] = time; ++time; } void make_rooted_tree() { parent[ROOT] = ROOT; depth[ROOT] = 0; int time = 0; dfs(ROOT, time); } void start_new_chain(int head) { int new_chain_id = chains.size(); chains.push_back({head}); chain_index[head] = new_chain_id; position_in_chain[head] = 0; } void recursive_construct_chain(int u) { int next_in_chain = UNCHECKED; for (int v : adj_list[u]) { if (v == parent[u]) { continue; } if (next_in_chain == UNCHECKED || subtree_size[next_in_chain] < subtree_size[v]) { next_in_chain = v; } } // Case: No children if (next_in_chain == UNCHECKED) { return; } // Set up next vertex in chain chains[chain_index[u]].push_back(next_in_chain); chain_index[next_in_chain] = chain_index[u]; position_in_chain[next_in_chain] = position_in_chain[u] + 1; recursive_construct_chain(next_in_chain); // Start new chains in all other children for (int v : adj_list[u]) { if (v == parent[u] || v == next_in_chain) { continue; } start_new_chain(v); recursive_construct_chain(v); } } void construct_chains() { start_new_chain(ROOT); recursive_construct_chain(ROOT); } // Returns true if u is an ancestor of v bool is_ancestor(int u, int v) { return dfs_start[u] <= dfs_start[v] && dfs_end[v] <= dfs_end[u]; } int find_lca(int u, int v) { // We don't really need HLD to find the LCA. // This can be done in O(1) per query using a Sparse Table. // (But I didn't know at the time, so oh well) // Step 1: Find chain containing LCA int u_chain_index = chain_index[u]; int u_curr = chains[u_chain_index][0]; while (!is_ancestor(u_curr, v)) { u_curr = parent[u_curr]; // Move to parent chain u_chain_index = chain_index[u_curr]; u_curr = chains[u_chain_index][0]; // Move to head of chain } int lca_chain_index = chain_index[u_curr]; int low = 0; int high = (int) (chains[lca_chain_index].size()) - 1; int lca = u_curr; // Step 2: Perform Binary Search on the chain while (low <= high) { int mid = low + (high - low) / 2; int vertex = chains[lca_chain_index][mid]; if (is_ancestor(vertex, v) && is_ancestor(vertex, u)) { lca = vertex; low = mid + 1; } else { high = mid - 1; } } return lca; } long long chain_sum(chain_value_type type, int chain_index, int chain_pos_start, int chain_pos_end) { auto &cumulative_memo = (type == chain_value_type::children ? cumulative_chain_children_memo : cumulative_chain_vertex_memo); auto &chain = cumulative_memo[chain_index]; return chain[chain_pos_start] - chain[chain_pos_end + 1]; } long long process_path(const path& p) { /* Here's the idea behind how this works. Consider the following tree, and the path from A1 to A5 (i.e. A1-A2-A3-A4-A5): A3 / \ A2 A4 / \ / \ A1 X3 X4 A5 / | / | \ X1 X2 X5 X6 X7 Let DP[V] represent the highest possible score (i.e. number of votes) obtainable among all the paths that exist in the subtree rooted at the vertex V. If we decide to take the path from A1 to A5, then the maximum remaining score we can obtain is the sum of the DP values of the remaining untouched children. In this case, that would be score(A1-A2-A3-A4-A5) + DP[X1] + DP[X2] + DP[X3] + DP[X4] + DP[X5] + DP[X6] + DP[X7] The DP terms can simply be added together because all the subtrees rooted at those vertices are disjoint. This is still hard to deal with, since there may be many children to consider, so let's try to represent it in a different way. Let children(V) represent the set of children of a vertex. For example, children(A2) returns {A1, X3}. Also for simplicity, let DP[{U1, ... , Uk}] = DP[U1] + ... + DP[Uk]. Now, we can represent the expression as such: score(A1-A2-A3-A4-A5) + DP[children(A1)] + DP[children(A2)] + DP[children(A3)] + DP[children(A4)] + DP[children(A5)] - DP[A1] - DP[A2] - DP[A4] - DP[A5] Or, to make the expression more general, for a path P = A-...-L-...-B, where L is the LCA of vertices A and B: score(P) + sum(DP[children(v)] for v in P) - sum(DP[v] for v in P excluding L) */ int lca_chain_index = chain_index[p.lca]; int lca_pos_in_chain = position_in_chain[p.lca]; long long answer = 0; int endpoints[] = {p.u, p.v}; for (int vertex : endpoints) { // Step 1: Climb up from curr to LCA long long path_value = 0; // Step 1a: Climb until the same chain as LCA int curr = vertex; while (chain_index[curr] != lca_chain_index) { int curr_chain_index = chain_index[curr]; int curr_pos_in_chain = position_in_chain[curr]; int curr_chain_head = chains[curr_chain_index][0]; path_value += chain_sum(chain_value_type::children, curr_chain_index, 0, curr_pos_in_chain); // cumulative_chain_children_memo[curr_chain_index][0] - cumulative_chain_children_memo[curr_chain_index][curr_pos_in_chain + 1]; path_value -= chain_sum(chain_value_type::vertex, curr_chain_index, 0, curr_pos_in_chain); // path_value -= cumulative_chain_vertex_memo[curr_chain_index][0] - cumulative_chain_vertex_memo[curr_chain_index][curr_pos_in_chain + 1]; curr = parent[curr_chain_head]; } // Step 1b: Climb from curr to LCA { int curr_pos_in_chain = position_in_chain[curr]; path_value += chain_sum(chain_value_type::children, lca_chain_index, lca_pos_in_chain + 1, curr_pos_in_chain); path_value -= chain_sum(chain_value_type::vertex, lca_chain_index, lca_pos_in_chain + 1, curr_pos_in_chain); // path_value += cumulative_chain_children_memo[lca_chain_index][lca_pos_in_chain + 1] - cumulative_chain_children_memo[lca_chain_index][curr_pos_in_chain + 1]; // path_value -= cumulative_chain_vertex_memo[lca_chain_index][lca_pos_in_chain + 1] - cumulative_chain_vertex_memo[lca_chain_index][curr_pos_in_chain + 1]; } answer += path_value; } answer += chain_sum(chain_value_type::children, lca_chain_index, lca_pos_in_chain, lca_pos_in_chain) + p.value; // answer += (cumulative_chain_children_memo[lca_chain_index][lca_pos_in_chain] - cumulative_chain_children_memo[lca_chain_index][lca_pos_in_chain + 1]) + p.value; return answer; } long long bottom_up_dp(int u) { // DP value of u represents the maximum value obtainable within subtree rooted at u. // Step 1: Process all children first. Keep track of sum of DP values of children long long children_dp = 0; for (int v : adj_list[u]) { if (v == parent[u]) { continue; } children_dp += bottom_up_dp(v); } // Step 2: Update cumulative chain children memo int u_chain_index = chain_index[u]; int u_pos_in_chain = position_in_chain[u]; cumulative_chain_children_memo[u_chain_index][u_pos_in_chain] = cumulative_chain_children_memo[u_chain_index][u_pos_in_chain + 1] + children_dp; // Step 3: Process all paths to find DP value of u long long u_dp_value = children_dp; for (path& p : lca_paths[u]) { u_dp_value = std::max(u_dp_value, process_path(p)); } // Step 4: Update cumulative chain vertex memo cumulative_chain_vertex_memo[u_chain_index][u_pos_in_chain] = cumulative_chain_vertex_memo[u_chain_index][u_pos_in_chain + 1] + u_dp_value; // Step 5: Return return u_dp_value; } public: heavy_light(int _num_vertices) : num_vertices(_num_vertices), adj_list(num_vertices), parent(num_vertices, UNCHECKED), depth(num_vertices, UNCHECKED), dfs_start(num_vertices, UNCHECKED), dfs_end(num_vertices, UNCHECKED), subtree_size(num_vertices, UNCHECKED), chain_index(num_vertices, UNCHECKED), position_in_chain(num_vertices, UNCHECKED), lca_paths(num_vertices) {} void add_edge(int u, int v) { adj_list[u].push_back(v); adj_list[v].push_back(u); } void decompose() { make_rooted_tree(); construct_chains(); } void print_details() { for (int i = 0; i < (int) chains.size(); ++i) { std::cout << "Chain #" << i << ": "; for (int u : chains[i]) { std::cout << u << "-"; } std::cout << "\n"; } std::cout << "\n"; for (int i = 0; i < num_vertices; ++i) { std::cout << "Vertex #" << i << " - DFS times: " << dfs_start[i] << " to " << dfs_end[i] << ", Chain ID: " << chain_index[i] << ", Position in Chain: " << position_in_chain[i] << "\n"; } } void add_path(int u, int v, long long value) { int lca = find_lca(u, v); lca_paths[lca].push_back({u, v, lca, value}); } long long get_answer() { for (auto& chain : chains) { cumulative_chain_children_memo.emplace_back(chain.size() + 1, 0); cumulative_chain_vertex_memo.emplace_back(chain.size() + 1, 0); } return bottom_up_dp(ROOT); } }; int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(nullptr); int num_vertices; std::cin >> num_vertices; heavy_light hld(num_vertices); for (int i = 0; i < num_vertices - 1; ++i) { int u, v; std::cin >> u >> v; hld.add_edge(u - 1, v - 1); // 1-indexed vertices } hld.decompose(); int num_paths; std::cin >> num_paths; for (int i = 0; i < num_paths; ++i) { int u, v; long long value; std::cin >> u >> v >> value; hld.add_path(u - 1, v - 1, value); // 1-indexed vertices } std::cout << hld.get_answer() << "\n"; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...