Submission #128968

# Submission time Handle Problem Language Result Execution time Memory
128968 2019-07-11T11:31:31 Z youngyojun Fibonacci representations (CEOI18_fib) C++11
100 / 100
2920 ms 15464 KB
#include <bits/stdc++.h>
#define eb emplace_back
#define sz(V) ((int)(V).size())
#define allv(V) ((V).begin()),((V).end())
#define sorv(V) sort(allv(V))
#define univ(V) (V).erase(unique(allv(V)),(V).end())
#define upmin(a,b) (a)=min((a),(b))
#define INF (0x3f3f3f3f)
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;

const int MOD = 1000000007;

struct MAT {
	MAT(int a = 1, int b = 0, int c = 0, int d = 1)
		: a(a), b(b), c(c), d(d) {}
	int a, b, c, d;

	void init() { a = d = 1; b = c = 0; }
	MAT operator * (const MAT &t) const {
		return MAT((ll(a)*t.a + ll(b)*t.c)%MOD, (ll(a)*t.b + ll(b)*t.d)%MOD
				 , (ll(c)*t.a + ll(d)*t.c)%MOD, (ll(c)*t.b + ll(d)*t.d)%MOD);
	}
};

const int MAXN = 100005;
const int SQRN = 330;

struct BUK {
	MAT mat[SQRN*2+5], matProd;
	int S[SQRN*2+5], E[SQRN*2+5];
	int n;

	void init() { n = 0; matProd.init(); }
	static void cal(MAT &mat, int ps, int pe, int s, int e) {
		if(ps < 0) { mat.init(); return; }
		int l = s-pe-1, c = (e-s)>>1;
		mat.a = (l+1)>>1; mat.b = l>>1;
		mat.c = (ll(c)*((l+1)>>1) + 1) % MOD;
		mat.d = (ll(c)*(l>>1) + 1) % MOD;
	}
	void calAll() {
		matProd.init();
		for(int i = 0; i < n; i++)
			matProd = mat[i] * matProd;
	}
	int find(int X) {
		if(!n || X < S[0] || E[n-1] < X) return -1;
		int i = 0; for(; i < n && S[i] < X; i++);
		return i;
	}
	void push(int s, int e) {
		int i = 0; for(; i < n && S[i] < s; i++);
		for(int j = n; i < j; j--) {
			swap(mat[j-1], mat[j]);
			S[j] = S[j-1];
			E[j] = E[j-1];
		}
		S[i] = s; E[i] = e; n++;
		cal(mat[i], S[i-1], E[i-1], s, e);
		cal(mat[i+1], s, e, S[i+1], E[i+1]);
	}
	void pushFront(int ps, int pe, int s, int e) {
		for(int i = n; i; i--) {
			swap(mat[i-1], mat[i]);
			S[i] = S[i-1];
			E[i] = E[i-1];
		}
		S[0] = s; E[0] = e; n++;
		cal(mat[0], ps, pe, s, e);
		cal(mat[1], s, e, S[1], E[1]);
	}
	void pushBack(int s, int e) {
		S[n] = s; E[n] = e;
		cal(mat[n], S[n-1], E[n-1], s, e);
		n++;
	}
	void pushNew(int ps, int pe, int s, int e) {
		S[0] = s; E[0] = e; n = 1;
		cal(mat[0], ps, pe, s, e);
	}
	void pop(int ps, int pe, int i) {
		cal(mat[i+1], ps, pe, S[i+1], E[i+1]);
		for(int j = i+1; j < n; j++) {
			swap(mat[j-1], mat[j]);
			S[j-1] = S[j];
			E[j-1] = E[j];
		}
		n--;
	}
};

struct TBL {
	BUK buk[SQRN+5];

	MAT mat[MAXN*2];
	int S[MAXN*2], E[MAXN*2];
	int n, qn;

	void release() {
		n = qn = 0;
		for(int i = 0; i < SQRN+5; i++) {
			for(int j = 0; j < buk[i].n; j++) {
				mat[n] = buk[i].mat[j];
				S[n] = buk[i].S[j];
				E[n] = buk[i].E[j];
				n++;
			}
			buk[i].init();
		}
		for(int s = 0, e, i = 0;;) {
			e = s+SQRN-1;
			if(n <= e) e = n-1;
			if(s > e) break;
			buk[i].n = e-s+1;
			for(int j = s, c = 0; j <= e; j++) {
				buk[i].mat[c] = mat[j];
				buk[i].S[c] = S[j];
				buk[i].E[c] = E[j];
				c++;
			}
			buk[i].calAll();
			s = e+1; i++;
		}
	}

	int findNxt(int i) {
		for(i++; i < SQRN+5 && !buk[i].n; i++);
		return SQRN+5 <= i ? -1 : i;
	}
	int findPrev(int i) {
		for(i--; 0 <= i && !buk[i].n; i--);
		return i;
	}
	void findPrev(int i, int j, int &ps, int &pe) {
		if(j) {
			ps = buk[i].S[j-1];
			pe = buk[i].E[j-1];
			return;
		}
		i = findPrev(i);
		if(0 <= i) {
			ps = buk[i].S[buk[i].n-1];
			pe = buk[i].E[buk[i].n-1];
			return;
		}
		ps = pe = -1;
	}

	void _push(int s, int e) {
		int i = 0;
		for(; i < SQRN+5 && (!buk[i].n || buk[i].E[buk[i].n-1] < s); i++);
		if(SQRN+3 < i) {
			i = SQRN+3;
			if(!buk[i].n) {
				int ps, pe; findPrev(i, 0, ps, pe);
				buk[i].pushNew(ps, pe, s, e);
				buk[i].calAll();
				return;
			}
			if(e < buk[i].S[0]) {
				int ps, pe; findPrev(i, 0, ps, pe);
				buk[i].pushFront(ps, pe, s, e);
				buk[i].calAll();
				return;
			}
			if(buk[i].E[buk[i].n-1] < s) {
				buk[i].pushBack(s, e);
				buk[i].calAll();
				return;
			}
			buk[i].push(s, e);
			buk[i].calAll();
			return;
		}
		if(!buk[i].n) {
			int ps, pe; findPrev(i, 0, ps, pe);
			buk[i].pushNew(ps, pe, s, e);
			buk[i].calAll();
			int nxt = findNxt(i);
			if(0 <= nxt) {
				BUK::cal(buk[nxt].mat[0], s, e, buk[nxt].S[0], buk[nxt].E[0]);
				buk[nxt].calAll();
			}
			return;
		}
		if(e < buk[i].S[0]) {
			int ps, pe; findPrev(i, 0, ps, pe);
			buk[i].pushFront(ps, pe, s, e);
			buk[i].calAll();
			return;
		}
		buk[i].push(s, e);
		buk[i].calAll();
	}

	void _pop(int s, int e) {
		int i = 0, j = -1;
		for(; i < SQRN+5; i++) {
			j = buk[i].find(s);
			if(0 <= j) break;
		}
		if(buk[i].n-1 == j) {
			int nxt = findNxt(i);
			int ps, pe; findPrev(i, j, ps, pe);
			if(0 <= nxt) {
				BUK::cal(buk[nxt].mat[0], ps, pe, buk[nxt].S[0], buk[nxt].E[0]);
				buk[nxt].calAll();
			}
			buk[i].n--;
			buk[i].calAll();
			return;
		}
		int ps, pe; findPrev(i, j, ps, pe);
		buk[i].pop(ps, pe, j);
		buk[i].calAll();
	}

	void push(int s, int e) {
		qn++;
		_push(s, e);
		if(SQRN == qn) release();
	}
	void pop(int s, int e) {
		qn++;
		_pop(s, e);
		if(SQRN == qn) release();
	}
	MAT get() {
		MAT ret;
		for(int i = 0; i < SQRN+5; i++) if(buk[i].n)
			ret = buk[i].matProd * ret;
		return ret;
	}
} tbl;




set<pii> CH;

set<pii>::iterator get(int X) { return prev(CH.upper_bound({X, INF})); }
bool has(int X) {
	auto it = CH.upper_bound({X, INF});
	if(CH.begin() == it) return false;
	int s, e; tie(s, e) = *prev(it);
	return s <= X && X <= e && (s&1) == (X&1);
}

void insert(int s, int e) {
	bool flag = CH.insert({s, e}).second;
	if(flag) tbl.push(s, e);
}
void erase(set<pii>::iterator it) {
	tbl.pop(it->first, it->second);
	CH.erase(it);
}

void push(int X) {
	if(X < 1) return;
	if(1 == X) X = 2;
	if(!has(X)) {
		if(has(X-1) && !has(X+1)) {
			auto it = get(X-1);
			int s, e; tie(s, e) = *it;
			erase(it);
			e -= 2;
			if(s <= e) insert(s, e);
			push(X+1);
			return;
		}
		if(!has(X-1) && has(X+1)) {
			auto it = get(X+1);
			int s, e; tie(s, e) = *it;
			erase(it);
			push(e+1);
			return;
		}
		if(has(X-1) && has(X+1)) {
			auto it = get(X);
			int s, e; tie(s, e) = *it;
			erase(it);
			insert(s, X-1);
			push(e+1);
			return;
		}
		int s = X, e = X;
		if(has(X-2)) {
			auto it = get(X-2);
			int p, q; tie(p, q) = *it;
			erase(it);
			s = p;
		}
		if(has(X+2)) {
			auto it = get(X+2);
			int p, q; tie(p, q) = *it;
			erase(it);
			e = q;
		}
		insert(s, e);
		return;
	}

	auto it = get(X);
	int s, e; tie(s, e) = *it;
	erase(it);
	if(s+1 < X) insert(s+1, X-1);
	push(e+1);
	push(s-2);
}


int N;

ll getAns() {
	if(CH.empty()) return 0;
	MAT mat = tbl.get();
	int s, e; tie(s, e) = *CH.begin();
	ll a = 0, b;
	if(1 < s-2) a = (ll(s-4)/2 + 1) % MOD;
	b = (1 + ll(s-2)/2 * ((e-s)/2)) % MOD;

	ll ret = a*mat.a % MOD;
	ret += b*mat.b % MOD;
	ret += a*mat.c % MOD;
	ret += b*mat.d % MOD;
	return ret % MOD;
}

int main() {
	ios::sync_with_stdio(false);

	cin >> N;
	for(int i = 0; i < N; i++) {
		int x;
		cin >> x;
		push(x+1);
		printf("%lld\n", getAns());
	}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 9 ms 8312 KB Output is correct
2 Correct 9 ms 8440 KB Output is correct
3 Correct 9 ms 8312 KB Output is correct
4 Correct 9 ms 8284 KB Output is correct
5 Correct 8 ms 8312 KB Output is correct
6 Correct 9 ms 8312 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 8312 KB Output is correct
2 Correct 9 ms 8440 KB Output is correct
3 Correct 9 ms 8312 KB Output is correct
4 Correct 9 ms 8284 KB Output is correct
5 Correct 8 ms 8312 KB Output is correct
6 Correct 9 ms 8312 KB Output is correct
7 Correct 9 ms 8312 KB Output is correct
8 Correct 9 ms 8312 KB Output is correct
9 Correct 9 ms 8340 KB Output is correct
10 Correct 9 ms 8312 KB Output is correct
11 Correct 9 ms 8312 KB Output is correct
12 Correct 9 ms 8312 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 8312 KB Output is correct
2 Correct 9 ms 8312 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 8312 KB Output is correct
2 Correct 9 ms 8440 KB Output is correct
3 Correct 9 ms 8312 KB Output is correct
4 Correct 9 ms 8284 KB Output is correct
5 Correct 8 ms 8312 KB Output is correct
6 Correct 9 ms 8312 KB Output is correct
7 Correct 9 ms 8312 KB Output is correct
8 Correct 9 ms 8312 KB Output is correct
9 Correct 9 ms 8340 KB Output is correct
10 Correct 9 ms 8312 KB Output is correct
11 Correct 9 ms 8312 KB Output is correct
12 Correct 9 ms 8312 KB Output is correct
13 Correct 9 ms 8312 KB Output is correct
14 Correct 9 ms 8312 KB Output is correct
15 Correct 9 ms 8316 KB Output is correct
16 Correct 9 ms 8312 KB Output is correct
17 Correct 9 ms 8312 KB Output is correct
18 Correct 9 ms 8360 KB Output is correct
19 Correct 9 ms 8312 KB Output is correct
20 Correct 9 ms 8284 KB Output is correct
21 Correct 9 ms 8312 KB Output is correct
22 Correct 9 ms 8312 KB Output is correct
23 Correct 9 ms 8312 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 8316 KB Output is correct
2 Correct 1319 ms 15320 KB Output is correct
3 Correct 1416 ms 14252 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 8312 KB Output is correct
2 Correct 9 ms 8440 KB Output is correct
3 Correct 9 ms 8312 KB Output is correct
4 Correct 9 ms 8284 KB Output is correct
5 Correct 8 ms 8312 KB Output is correct
6 Correct 9 ms 8312 KB Output is correct
7 Correct 9 ms 8312 KB Output is correct
8 Correct 9 ms 8312 KB Output is correct
9 Correct 9 ms 8340 KB Output is correct
10 Correct 9 ms 8312 KB Output is correct
11 Correct 9 ms 8312 KB Output is correct
12 Correct 9 ms 8312 KB Output is correct
13 Correct 9 ms 8312 KB Output is correct
14 Correct 9 ms 8312 KB Output is correct
15 Correct 9 ms 8316 KB Output is correct
16 Correct 9 ms 8312 KB Output is correct
17 Correct 9 ms 8312 KB Output is correct
18 Correct 9 ms 8360 KB Output is correct
19 Correct 9 ms 8312 KB Output is correct
20 Correct 9 ms 8284 KB Output is correct
21 Correct 9 ms 8312 KB Output is correct
22 Correct 9 ms 8312 KB Output is correct
23 Correct 9 ms 8312 KB Output is correct
24 Correct 9 ms 8316 KB Output is correct
25 Correct 1319 ms 15320 KB Output is correct
26 Correct 1416 ms 14252 KB Output is correct
27 Correct 273 ms 10468 KB Output is correct
28 Correct 505 ms 11996 KB Output is correct
29 Correct 64 ms 8568 KB Output is correct
30 Correct 539 ms 11716 KB Output is correct
31 Correct 1060 ms 8956 KB Output is correct
32 Correct 988 ms 10636 KB Output is correct
33 Correct 1369 ms 9308 KB Output is correct
34 Correct 142 ms 8952 KB Output is correct
35 Correct 1373 ms 9536 KB Output is correct
36 Correct 1433 ms 9348 KB Output is correct
37 Correct 757 ms 9208 KB Output is correct
38 Correct 1328 ms 15464 KB Output is correct
39 Correct 103 ms 8696 KB Output is correct
40 Correct 136 ms 8668 KB Output is correct
41 Correct 1557 ms 9440 KB Output is correct
42 Correct 1319 ms 15108 KB Output is correct
43 Correct 165 ms 9404 KB Output is correct
44 Correct 160 ms 9336 KB Output is correct
45 Correct 2856 ms 9948 KB Output is correct
46 Correct 201 ms 9404 KB Output is correct
47 Correct 2379 ms 12944 KB Output is correct
48 Correct 2503 ms 9464 KB Output is correct
49 Correct 2920 ms 9948 KB Output is correct
50 Correct 1641 ms 14608 KB Output is correct