Submission #128963

# Submission time Handle Problem Language Result Execution time Memory
128963 2019-07-11T11:29:57 Z youngyojun Fibonacci representations (CEOI18_fib) C++11
100 / 100
3776 ms 20028 KB
#include <bits/stdc++.h>
#define eb emplace_back
#define sz(V) ((int)(V).size())
#define allv(V) ((V).begin()),((V).end())
#define sorv(V) sort(allv(V))
#define univ(V) (V).erase(unique(allv(V)),(V).end())
#define upmin(a,b) (a)=min((a),(b))
#define INF (0x3f3f3f3f)
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;

const int MOD = 1000000007;

struct MAT {
	MAT(int a = 1, int b = 0, int c = 0, int d = 1)
		: a(a), b(b), c(c), d(d) {}
	int a, b, c, d;

	void init() { a = d = 1; b = c = 0; }
	MAT operator * (const MAT &t) const {
		return MAT((ll(a)*t.a + ll(b)*t.c)%MOD, (ll(a)*t.b + ll(b)*t.d)%MOD
				 , (ll(c)*t.a + ll(d)*t.c)%MOD, (ll(c)*t.b + ll(d)*t.d)%MOD);
	}
};

const int MAXN = 100005;
const int SQRN = 450;

struct BUK {
	MAT mat[SQRN*2+5], matProd;
	int S[SQRN*2+5], E[SQRN*2+5];
	int n;

	void init() { n = 0; matProd.init(); }
	static void cal(MAT &mat, int ps, int pe, int s, int e) {
		if(ps < 0) { mat.init(); return; }
		int l = s-pe-1, c = (e-s)>>1;
		mat.a = (l+1)>>1; mat.b = l>>1;
		mat.c = (ll(c)*((l+1)>>1) + 1) % MOD;
		mat.d = (ll(c)*(l>>1) + 1) % MOD;
	}
	void calAll() {
		matProd.init();
		for(int i = 0; i < n; i++)
			matProd = mat[i] * matProd;
	}
	int find(int X) {
		if(!n || X < S[0] || E[n-1] < X) return -1;
		int i = 0; for(; i < n && S[i] < X; i++);
		return i;
	}
	void push(int s, int e) {
		int i = 0; for(; i < n && S[i] < s; i++);
		for(int j = n; i < j; j--) {
			swap(mat[j-1], mat[j]);
			S[j] = S[j-1];
			E[j] = E[j-1];
		}
		S[i] = s; E[i] = e; n++;
		cal(mat[i], S[i-1], E[i-1], s, e);
		cal(mat[i+1], s, e, S[i+1], E[i+1]);
	}
	void pushFront(int ps, int pe, int s, int e) {
		for(int i = n; i; i--) {
			swap(mat[i-1], mat[i]);
			S[i] = S[i-1];
			E[i] = E[i-1];
		}
		S[0] = s; E[0] = e; n++;
		cal(mat[0], ps, pe, s, e);
		cal(mat[1], s, e, S[1], E[1]);
	}
	void pushBack(int s, int e) {
		S[n] = s; E[n] = e;
		cal(mat[n], S[n-1], E[n-1], s, e);
		n++;
	}
	void pushNew(int ps, int pe, int s, int e) {
		S[0] = s; E[0] = e; n = 1;
		cal(mat[0], ps, pe, s, e);
	}
	void pop(int ps, int pe, int i) {
		cal(mat[i+1], ps, pe, S[i+1], E[i+1]);
		for(int j = i+1; j < n; j++) {
			swap(mat[j-1], mat[j]);
			S[j-1] = S[j];
			E[j-1] = E[j];
		}
		n--;
	}
};

struct TBL {
	BUK buk[SQRN+5];

	MAT mat[MAXN*2];
	int S[MAXN*2], E[MAXN*2];
	int n, qn;

	void release() {
		n = qn = 0;
		for(int i = 0; i < SQRN+5; i++) {
			for(int j = 0; j < buk[i].n; j++) {
				mat[n] = buk[i].mat[j];
				S[n] = buk[i].S[j];
				E[n] = buk[i].E[j];
				n++;
			}
			buk[i].init();
		}
		for(int s = 0, e, i = 0;;) {
			e = s+SQRN-1;
			if(n <= e) e = n-1;
			if(s > e) break;
			buk[i].n = e-s+1;
			for(int j = s, c = 0; j <= e; j++) {
				buk[i].mat[c] = mat[j];
				buk[i].S[c] = S[j];
				buk[i].E[c] = E[j];
				c++;
			}
			buk[i].calAll();
			s = e+1; i++;
		}
	}

	int findNxt(int i) {
		for(i++; i < SQRN+5 && !buk[i].n; i++);
		return SQRN+5 <= i ? -1 : i;
	}
	int findPrev(int i) {
		for(i--; 0 <= i && !buk[i].n; i--);
		return i;
	}
	void findPrev(int i, int j, int &ps, int &pe) {
		if(j) {
			ps = buk[i].S[j-1];
			pe = buk[i].E[j-1];
			return;
		}
		i = findPrev(i);
		if(0 <= i) {
			ps = buk[i].S[buk[i].n-1];
			pe = buk[i].E[buk[i].n-1];
			return;
		}
		ps = pe = -1;
	}

	void _push(int s, int e) {
		int i = 0;
		for(; i < SQRN+5 && (!buk[i].n || buk[i].E[buk[i].n-1] < s); i++);
		if(SQRN+3 < i) {
			i = SQRN+3;
			if(!buk[i].n) {
				int ps, pe; findPrev(i, 0, ps, pe);
				buk[i].pushNew(ps, pe, s, e);
				buk[i].calAll();
				return;
			}
			if(e < buk[i].S[0]) {
				int ps, pe; findPrev(i, 0, ps, pe);
				buk[i].pushFront(ps, pe, s, e);
				buk[i].calAll();
				return;
			}
			if(buk[i].E[buk[i].n-1] < s) {
				buk[i].pushBack(s, e);
				buk[i].calAll();
				return;
			}
			buk[i].push(s, e);
			buk[i].calAll();
			return;
		}
		if(!buk[i].n) {
			int ps, pe; findPrev(i, 0, ps, pe);
			buk[i].pushNew(ps, pe, s, e);
			buk[i].calAll();
			int nxt = findNxt(i);
			if(0 <= nxt) {
				BUK::cal(buk[nxt].mat[0], s, e, buk[nxt].S[0], buk[nxt].E[0]);
				buk[nxt].calAll();
			}
			return;
		}
		if(e < buk[i].S[0]) {
			int ps, pe; findPrev(i, 0, ps, pe);
			buk[i].pushFront(ps, pe, s, e);
			buk[i].calAll();
			return;
		}
		buk[i].push(s, e);
		buk[i].calAll();
	}

	void _pop(int s, int e) {
		int i = 0, j = -1;
		for(; i < SQRN+5; i++) {
			j = buk[i].find(s);
			if(0 <= j) break;
		}
		if(buk[i].n-1 == j) {
			int nxt = findNxt(i);
			int ps, pe; findPrev(i, j, ps, pe);
			if(0 <= nxt) {
				BUK::cal(buk[nxt].mat[0], ps, pe, buk[nxt].S[0], buk[nxt].E[0]);
				buk[nxt].calAll();
			}
			buk[i].n--;
			buk[i].calAll();
			return;
		}
		int ps, pe; findPrev(i, j, ps, pe);
		buk[i].pop(ps, pe, j);
		buk[i].calAll();
	}

	void push(int s, int e) {
		qn++;
		_push(s, e);
		if(SQRN == qn) release();
	}
	void pop(int s, int e) {
		qn++;
		_pop(s, e);
		if(SQRN == qn) release();
	}
	MAT get() {
		MAT ret;
		for(int i = 0; i < SQRN+5; i++) if(buk[i].n)
			ret = buk[i].matProd * ret;
		return ret;
	}
} tbl;




set<pii> CH;

set<pii>::iterator get(int X) { return prev(CH.upper_bound({X, INF})); }
bool has(int X) {
	auto it = CH.upper_bound({X, INF});
	if(CH.begin() == it) return false;
	int s, e; tie(s, e) = *prev(it);
	return s <= X && X <= e && (s&1) == (X&1);
}

void insert(int s, int e) {
	bool flag = CH.insert({s, e}).second;
	if(flag) tbl.push(s, e);
}
void erase(set<pii>::iterator it) {
	tbl.pop(it->first, it->second);
	CH.erase(it);
}

void push(int X) {
	if(X < 1) return;
	if(1 == X) X = 2;
	if(!has(X)) {
		if(has(X-1) && !has(X+1)) {
			auto it = get(X-1);
			int s, e; tie(s, e) = *it;
			erase(it);
			e -= 2;
			if(s <= e) insert(s, e);
			push(X+1);
			return;
		}
		if(!has(X-1) && has(X+1)) {
			auto it = get(X+1);
			int s, e; tie(s, e) = *it;
			erase(it);
			push(e+1);
			return;
		}
		if(has(X-1) && has(X+1)) {
			auto it = get(X);
			int s, e; tie(s, e) = *it;
			erase(it);
			insert(s, X-1);
			push(e+1);
			return;
		}
		int s = X, e = X;
		if(has(X-2)) {
			auto it = get(X-2);
			int p, q; tie(p, q) = *it;
			erase(it);
			s = p;
		}
		if(has(X+2)) {
			auto it = get(X+2);
			int p, q; tie(p, q) = *it;
			erase(it);
			e = q;
		}
		insert(s, e);
		return;
	}

	auto it = get(X);
	int s, e; tie(s, e) = *it;
	erase(it);
	if(s+1 < X) insert(s+1, X-1);
	push(e+1);
	push(s-2);
}


int N;

ll getAns() {
	if(CH.empty()) return 0;
	MAT mat = tbl.get();
	int s, e; tie(s, e) = *CH.begin();
	ll a = 0, b;
	if(1 < s-2) a = (ll(s-4)/2 + 1) % MOD;
	b = (1 + ll(s-2)/2 * ((e-s)/2)) % MOD;

	ll ret = a*mat.a % MOD;
	ret += b*mat.b % MOD;
	ret += a*mat.c % MOD;
	ret += b*mat.d % MOD;
	return ret % MOD;
}

int main() {
	ios::sync_with_stdio(false);

	cin >> N;
	for(int i = 0; i < N; i++) {
		int x;
		cin >> x;
		push(x+1);
		printf("%lld\n", getAns());
	}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 12 ms 11768 KB Output is correct
2 Correct 12 ms 11764 KB Output is correct
3 Correct 11 ms 11768 KB Output is correct
4 Correct 11 ms 11772 KB Output is correct
5 Correct 12 ms 11768 KB Output is correct
6 Correct 12 ms 11768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 11768 KB Output is correct
2 Correct 12 ms 11764 KB Output is correct
3 Correct 11 ms 11768 KB Output is correct
4 Correct 11 ms 11772 KB Output is correct
5 Correct 12 ms 11768 KB Output is correct
6 Correct 12 ms 11768 KB Output is correct
7 Correct 12 ms 11740 KB Output is correct
8 Correct 12 ms 11768 KB Output is correct
9 Correct 12 ms 11896 KB Output is correct
10 Correct 12 ms 11768 KB Output is correct
11 Correct 12 ms 11768 KB Output is correct
12 Correct 12 ms 11768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 11796 KB Output is correct
2 Correct 12 ms 11740 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 11768 KB Output is correct
2 Correct 12 ms 11764 KB Output is correct
3 Correct 11 ms 11768 KB Output is correct
4 Correct 11 ms 11772 KB Output is correct
5 Correct 12 ms 11768 KB Output is correct
6 Correct 12 ms 11768 KB Output is correct
7 Correct 12 ms 11740 KB Output is correct
8 Correct 12 ms 11768 KB Output is correct
9 Correct 12 ms 11896 KB Output is correct
10 Correct 12 ms 11768 KB Output is correct
11 Correct 12 ms 11768 KB Output is correct
12 Correct 12 ms 11768 KB Output is correct
13 Correct 11 ms 11796 KB Output is correct
14 Correct 12 ms 11740 KB Output is correct
15 Correct 12 ms 11768 KB Output is correct
16 Correct 12 ms 11768 KB Output is correct
17 Correct 12 ms 11768 KB Output is correct
18 Correct 17 ms 11772 KB Output is correct
19 Correct 12 ms 11768 KB Output is correct
20 Correct 15 ms 11768 KB Output is correct
21 Correct 12 ms 11768 KB Output is correct
22 Correct 12 ms 11768 KB Output is correct
23 Correct 12 ms 11768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 11768 KB Output is correct
2 Correct 1411 ms 20028 KB Output is correct
3 Correct 1493 ms 18600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 11768 KB Output is correct
2 Correct 12 ms 11764 KB Output is correct
3 Correct 11 ms 11768 KB Output is correct
4 Correct 11 ms 11772 KB Output is correct
5 Correct 12 ms 11768 KB Output is correct
6 Correct 12 ms 11768 KB Output is correct
7 Correct 12 ms 11740 KB Output is correct
8 Correct 12 ms 11768 KB Output is correct
9 Correct 12 ms 11896 KB Output is correct
10 Correct 12 ms 11768 KB Output is correct
11 Correct 12 ms 11768 KB Output is correct
12 Correct 12 ms 11768 KB Output is correct
13 Correct 11 ms 11796 KB Output is correct
14 Correct 12 ms 11740 KB Output is correct
15 Correct 12 ms 11768 KB Output is correct
16 Correct 12 ms 11768 KB Output is correct
17 Correct 12 ms 11768 KB Output is correct
18 Correct 17 ms 11772 KB Output is correct
19 Correct 12 ms 11768 KB Output is correct
20 Correct 15 ms 11768 KB Output is correct
21 Correct 12 ms 11768 KB Output is correct
22 Correct 12 ms 11768 KB Output is correct
23 Correct 12 ms 11768 KB Output is correct
24 Correct 12 ms 11768 KB Output is correct
25 Correct 1411 ms 20028 KB Output is correct
26 Correct 1493 ms 18600 KB Output is correct
27 Correct 312 ms 14156 KB Output is correct
28 Correct 564 ms 15920 KB Output is correct
29 Correct 85 ms 12024 KB Output is correct
30 Correct 630 ms 15524 KB Output is correct
31 Correct 1204 ms 13132 KB Output is correct
32 Correct 1194 ms 14540 KB Output is correct
33 Correct 1780 ms 13156 KB Output is correct
34 Correct 159 ms 12664 KB Output is correct
35 Correct 1759 ms 13480 KB Output is correct
36 Correct 1873 ms 13288 KB Output is correct
37 Correct 788 ms 13024 KB Output is correct
38 Correct 1366 ms 19988 KB Output is correct
39 Correct 138 ms 12280 KB Output is correct
40 Correct 166 ms 12408 KB Output is correct
41 Correct 2101 ms 13396 KB Output is correct
42 Correct 1375 ms 19804 KB Output is correct
43 Correct 205 ms 13848 KB Output is correct
44 Correct 222 ms 13828 KB Output is correct
45 Correct 3736 ms 14408 KB Output is correct
46 Correct 227 ms 13560 KB Output is correct
47 Correct 2713 ms 17464 KB Output is correct
48 Correct 3102 ms 13816 KB Output is correct
49 Correct 3776 ms 14464 KB Output is correct
50 Correct 1747 ms 19300 KB Output is correct