//testing AI Code
#include <vector>
#include <map>
#include <algorithm>
#include <iostream>
using namespace std;
std::vector<std::vector<int>> create_map(int N, int M, std::vector<int> A, std::vector<int> B) {
// 1. Precompute Adjacency Matrix
// Adj[i][j] is true if country i is adjacent to country j.
// Use 1-based indexing for countries (1 to N).
std::vector<std::vector<bool>> Adj(N + 1, std::vector<bool>(N + 1, false));
for (int k = 0; k < M; ++k) {
Adj[A[k]][B[k]] = true;
Adj[B[k]][A[k]] = true;
}
// Determine the isolation/hub color. Country 1 is a good general choice.
// If the problem guarantees a map exists, we can use a structural construction.
// The construction must guarantee K/N <= 2 (K=2N).
int K = 2 * N;
std::vector<std::vector<int>> C(K, std::vector<int>(K));
// Iterate over the N x N blocks of size 2x2.
for (int i = 0; i < N; ++i) { // Block row index (0 to N-1)
for (int j = 0; j < N; ++j) { // Block column index (0 to N-1)
int A_country = i + 1;
int B_country = j + 1;
// Coordinates of the top-left cell of the 2x2 block
int r_start = 2 * i;
int c_start = 2 * j;
if (A_country == B_country) {
// Case 1: Main Block (i=j). Fill with a single color i+1.
C[r_start][c_start] = A_country;
C[r_start][c_start + 1] = A_country;
C[r_start + 1][c_start] = A_country;
C[r_start + 1][c_start + 1] = A_country;
} else if (Adj[A_country][B_country]) {
// Case 2: Required Adjacency. Create an A-B boundary within the block.
// This satisfies Condition 2: (A, B) must touch.
// We ensure no other colors are involved in this block.
C[r_start][c_start] = A_country;
C[r_start][c_start + 1] = B_country;
C[r_start + 1][c_start] = B_country;
C[r_start + 1][c_start + 1] = A_country;
} else {
// Case 3: Forbidden Adjacency (A, B not adjacent).
// Fill with an isolation color (Country 1) to satisfy Condition 3.
// This assumes Country 1 is a "hub" or "universal connector" adjacent to all other countries.
// Subtask 4 suggests this is a common case.
int X_country = 1;
// We must confirm that using X creates only allowed adjacencies.
// The new adjacencies will be A-X and B-X (at the block boundaries).
// Since A is adjacent to i-1, i+1, and B is adjacent to j-1, j+1,
// we only need to check A-X and B-X.
// The problem guarantees a solution exists, so this hub-filling strategy
// is likely intended for the optimal K/N solution.
C[r_start][c_start] = X_country;
C[r_start][c_start + 1] = X_country;
C[r_start + 1][c_start] = X_country;
C[r_start + 1][c_start + 1] = X_country;
}
}
}
// The construction satisfies:
// 1. Presence: All N countries are on the diagonal blocks.
// 2. Required Adjacency: Handled in Case 2.
// 3. Forbidden Adjacency:
// - Within Main/Forbidden blocks: No forbidden adjacencies are created.
// - Across block boundaries (i.e., A_country vs X_country): Requires X to be adjacent to A/B,
// which is satisfied if X=1 is the hub color (as in Subtask 4).
return C;
}
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |