#include <bits/stdc++.h>
//#include "festival.h"
using namespace std;
long long MX=1e15;
long long fnd(vector <long long>& k, long long num){
long long l=0;
long long r=k.size()-1;
if (num >= k[r]) return r;
while (l<r) {
long long md=(l+r+1)/2;
if (k[md]<=num)
l=md;
else
r=md-1;
}
return l;
}
vector<int> max_coupons(int A,vector<int> P,vector <int> T){
vector <pair<long long,long long>> vp[5];
for (int i=0; i<P.size(); i++){vp[T[i]].push_back({P[i],i});}
int sub_task_6=1;
for (int i=0; i<P.size(); i++){if (1LL*(A-P[i])*T[i]>=1LL*A){sub_task_6=0;}}
//cout<<sub_task_6;
//cout<<"\n";
if (vp[2].size()==0 && vp[3].size()==0 && vp[4].size()==0){
//subtask 1 / 5 points / T[i] = 1 for each i such that 0 ≤ i < N
//for subtask 1 it is clear that we should sort and just do some o(n) solution.
sort(vp[1].begin(),vp[1].end());vector <int> ans;int k=0;
while (A>=0 && k<vp[1].size()){A=A-vp[1][k].first;ans.push_back(vp[1][k].second);k++;}
if (A<0)ans.pop_back();
return (ans);}
else if (vp[3].size()==0 && vp[4].size()==0){
//subtask 2 / 7 points / N ≤ 3000; T[i] ≤ 2 for each i such that 0 ≤ i < N.
//subtask 3 / 12 points / T[i] ≤ 2 for each i such that 0 ≤ i < N.
//both of the subtasks have a common constraint T[i]<=2 hence we will use that to solve both the subtasks
//Is there any point in
// 1: buying a T[i]==2 coupon after any T[i]==1.
// because {X,Y|X is the P[i] where T[i]==1,Y is the P[i] where T[i]==2}
// ((A-X)*1-Y)*2<((A-Y)*2-X) where if we simplify it {0<X} hence no need.
// Inductively we can say that the structure should be something like (for the T values) 2,2,2,2,1,1,1,1,1
// 2: for any structure if we seperate the 1s and 2s for the T values there can not be any {i,j|0<=i,j<=n-1,j=i+1}
// such that P[i]>=P[j] because ((A-P[i])*2-P[j])*2<((A-P[j])*2-P[i])*2 because if we simplify it we get
// P[j]<P[Pi] hence we must sort it.
// 3: if at any point we have money>=2e14 we can just do anything we want since 2e14>=max(N)*max(P[i])
//
//With these two in mind for subtask 2 for every possible ending of the 2 chain
//we use our subtask 1 solution to get the length of the max len of our ans if the 2 chain ended there
//hence our time complexity is o(vp2.size()*vp1.size())~o(n*n)=o(n^2)
//
//To get subtask 3 we just add Prefix sum followed by binary search to it.
//hence our time complexity is o(vp2.size()*log(vp1.size()))~o(n*logn)
vector <long long> psum1;
vector <long long> psum2;
long long sm1=0;
long long sm2=A;
vp[1].push_back({0,-1});
vp[2].push_back({0,-1});
sort(vp[1].begin(),vp[1].end());
sort(vp[2].begin(),vp[2].end());
for (long long i=0; i<vp[1].size(); i++){
sm1+=vp[1][i].first;
psum1.push_back(sm1);
}
for (long long i=0; i<vp[2].size(); i++){
sm2-=vp[2][i].first;
if (vp[2][i].first==0){
psum2.push_back(sm2);
}
else if (sm2>=0){
sm2=sm2*2;
sm2=min(sm2,MX);
psum2.push_back(sm2);
}
else{
psum2.push_back(-1);
}
}
vector <int> ans;
long long k=0,maxh=0,maxpos=-1;
for (long long i=0; i<vp[2].size(); i++){
if (psum2[i]>=0){
long long kk=fnd(psum1,psum2[i]);
if (kk+i>=maxh){maxpos=i;maxh=kk+i;}
}}
for (long long i=1; i<=maxpos; i++){
ans.push_back(vp[2][i].second);
}
for (long long i=1; i<=maxh-maxpos; i++){
ans.push_back(vp[1][i].second);
}
return (ans);}
//for online compiler use the /* */ around the <=70 subtask solution
//because online compilers dont have that much space
else if (P.size()<=70){
//subtask 4 / 15 points / N ≤ 70
//it is obvious it is o(n^4) and we just have to make a 4d dp with with the info we got from
//the second and third subtask. One thing to note is that we dont really have to care abt the
//negative value until the end because the negative values wont turn positive ever.
for (int i = 1; i <= 4; i++) {
sort(vp[i].begin(), vp[i].end());
}
long long dp[71][71][71][71];
for (int i=0; i<71; i++){
for (int j=0; j<71; j++){
for (int k=0; k<71; k++){
for (int l=0; l<71; l++){dp[i][j][k][l]=-1;}}}}
dp[0][0][0][0]=A;
vector<int> vvv={0,0,0,0};
int idx[5] = {0};
for (idx[1]=0; idx[1]<=vp[1].size(); idx[1]++){
for (idx[2]=0; idx[2]<=vp[2].size(); idx[2]++){
for (idx[3]=0; idx[3]<=vp[3].size(); idx[3]++){
for (idx[4]=0; idx[4]<=vp[4].size(); idx[4]++){
long long &tttt=dp[idx[1]][idx[2]][idx[3]][idx[4]];
for (int i=1; i<=4; i++) {
if (idx[i]==0)continue;
long long prv=dp[idx[1]-(i==1)][idx[2]-(i==2)][idx[3]-(i==3)][idx[4]-(i==4)];
tttt=max(tttt,(prv-vp[i][idx[i]-1].first)*i);
}
tttt=min(tttt,MX);
long long SM=0;
for (int i=0; i<vvv.size(); i++){SM+=vvv[i];}
if(tttt>=0&&idx[1]+idx[2]+idx[3]+idx[4]>SM){vvv={idx[1],idx[2],idx[3],idx[4]};}
}
}
}
}
vector<int> ans;
while (vvv[0]+vvv[1]+vvv[2]+vvv[3]){
long long rem=dp[vvv[0]][vvv[1]][vvv[2]][vvv[3]];
for (int i=1; i<=4; i++) {
if (vvv[i-1]==0)continue;
long long prv=dp[vvv[0]-(i==1)][vvv[1]-(i==2)][vvv[2]-(i==3)][vvv[3]-(i==4)];
if (min((prv-vp[i][vvv[i-1]-1].first)*i,MX)==rem) {
ans.push_back(vp[i][vvv[i-1]-1].second);
vvv[i-1]--;
break;
}
}
}
reverse(ans.begin(),ans.end());
return ans;
}
if (sub_task_6==1){
//subtask 6 / 16 points / (A − P[i]) ⋅ T[i] < A for each i such that 0 ≤ i < N.
//Even though it looks like this inequality wont give us much this is actually rapidly decreasing
//like those 1/x functions (IF WE REMOVE THE T[i]==1) becasue for a random time event where the current
//money we have is A-x then (A-x-P[i])*T[i]<A-x*t[i] hence we can see it is decreasing rapidly
//we can use the implementation we did on our subtask 2-3 the binary search.and the subtask 4
vp[1].push_back({0,-1});
for (int i=1; i<=4; i++){sort(vp[i].begin(), vp[i].end());}
vector <long long> psum1;
long long sm1=0;
for (long long i=0; i<vp[1].size(); i++){
sm1+=vp[1][i].first;
psum1.push_back(sm1);
}
long long dp[21][21][21];
for (int j=0; j<21; j++){
for (int k=0; k<21; k++){
for (int l=0; l<21; l++){dp[j][k][l]=-1;}}}
dp[0][0][0]=A;
vector<long long> vvv={0,0,0};
long long vvv1=fnd(psum1,0);
int idx[5] = {0};
for (idx[2]=0; idx[2]<=vp[2].size() && idx[2]<21; idx[2]++){
for (idx[3]=0; idx[3]<=vp[3].size() && idx[3]<21; idx[3]++){
for (idx[4]=0; idx[4]<=vp[4].size() && idx[4]<21; idx[4]++){
long long &tttt=dp[idx[2]][idx[3]][idx[4]];
for (int i=2; i<=4; i++) {
if (idx[i]==0)continue;
long long prv=dp[idx[2]-(i==2)][idx[3]-(i==3)][idx[4]-(i==4)];
tttt=max(tttt,(prv-vp[i][idx[i]-1].first)*i);
}
tttt=min(tttt,MX);
long long SM=0;
for (int i=0; i<vvv.size(); i++){SM+=vvv[i];}
SM+=vvv1;
if(tttt>=0 && fnd(psum1,tttt)+idx[2]+idx[3]+idx[4]>SM){vvv={idx[2],idx[3],idx[4]};vvv1={fnd(psum1,tttt)};}
}
}
}
vector<int> ans;
for (int i=1; i<=vvv1; i++){
ans.push_back(vp[1][i].second);
}
while (vvv[0]+vvv[1]+vvv[2]){
long long rem=dp[vvv[0]][vvv[1]][vvv[2]];
for (int i=1; i<=3; i++) {
if (vvv[i-1]==0)continue;
long long prv=dp[vvv[0]-(i==1)][vvv[1]-(i==2)][vvv[2]-(i==3)];
if (min((prv-vp[i+1][vvv[i-1]-1].first)*(i+1),MX)==rem) {
ans.push_back(vp[i+1][vvv[i-1]-1].second);
vvv[i-1]--;
break;
}
}
}
reverse(ans.begin(),ans.end());
return ans;
}
else{
//subtask 5 / 27 points / Nayra can buy all N coupons (in some order).
//since there is a sequence where we can acquire every coupon we just have to find
//a sequence that lets us have all of them hence we will no longer have to deal with some money issues
//doing simple algebra gives the formula that if we pick (i,j) over (j,i) then
//P[i]*T[i]/(T[i]-1)<P[j]*T[j]/(T[j]-1)
long long a = A;
vector<int> vv(P.size());
for (int i=0; i<P.size(); i++)vv[i]=i;
sort(vv.begin(), vv.end(), [&](int i, int j) {
if (T[i]==T[j]) return P[i]<P[j];
return 1ll*P[i]*T[i]*(T[j]-1)<1ll*P[j]*T[j]*(T[i]-1);
});
vector<int> ans;
for(int i=0; i<P.size(); i++){
if(a>=P[vv[i]]){
a=(a-P[vv[i]])*T[vv[i]];
a=min(a,MX);
ans.push_back(vv[i]);
}
}
return ans;}
}
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |
| # | Verdict | Execution time | Memory | Grader output |
|---|
| Fetching results... |