제출 #1286198

#제출 시각아이디문제언어결과실행 시간메모리
1286198eri16축제 (IOI25_festival)C++20
66 / 100
166 ms210064 KiB
#include <bits/stdc++.h> //#include "festival.h" using namespace std; long long MX=1e15; long long fnd(vector <long long>& k, long long num){ long long l=0; long long r=k.size()-1; if (num >= k[r]) return r; while (l<r) { long long md=(l+r+1)/2; if (k[md]<=num) l=md; else r=md-1; } return l; } vector<int> max_coupons(int A,vector<int> P,vector <int> T){ vector <pair<long long,long long>> vp[5]; for (int i=0; i<P.size(); i++){vp[T[i]].push_back({P[i],i});} int sub_task_6=1; for (int i=0; i<P.size(); i++){if ((A-P[i])*T[i]>=A){sub_task_6=0;}} if (vp[2].size()==0 && vp[3].size()==0 && vp[4].size()==0){ //subtask 1 / 5 points / T[i] = 1 for each i such that 0 ≤ i < N //for subtask 1 it is clear that we should sort and just do some o(n) solution. sort(vp[1].begin(),vp[1].end());vector <int> ans;int k=0; while (A>=0 && k<vp[1].size()){A=A-vp[1][k].first;ans.push_back(vp[1][k].second);k++;} if (A<0)ans.pop_back(); return (ans);} else if (vp[3].size()==0 && vp[4].size()==0){ //subtask 2 / 7 points / N ≤ 3000; T[i] ≤ 2 for each i such that 0 ≤ i < N. //subtask 3 / 12 points / T[i] ≤ 2 for each i such that 0 ≤ i < N. //both of the subtasks have a common constraint T[i]<=2 hence we will use that to solve both the subtasks //Is there any point in // 1: buying a T[i]==2 coupon after any T[i]==1. // because {X,Y|X is the P[i] where T[i]==1,Y is the P[i] where T[i]==2} // ((A-X)*1-Y)*2<((A-Y)*2-X) where if we simplify it {0<X} hence no need. // Inductively we can say that the structure should be something like (for the T values) 2,2,2,2,1,1,1,1,1 // 2: for any structure if we seperate the 1s and 2s for the T values there can not be any {i,j|0<=i,j<=n-1,j=i+1} // such that P[i]>=P[j] because ((A-P[i])*2-P[j])*2<((A-P[j])*2-P[i])*2 because if we simplify it we get // P[j]<P[Pi] hence we must sort it. // 3: if at any point we have money>=2e14 we can just do anything we want since 2e14>=max(N)*max(P[i]) // //With these two in mind for subtask 2 for every possible ending of the 2 chain //we use our subtask 1 solution to get the length of the max len of our ans if the 2 chain ended there //hence our time complexity is o(vp2.size()*vp1.size())~o(n*n)=o(n^2) // //To get subtask 3 we just add Prefix sum followed by binary search to it. //hence our time complexity is o(vp2.size()*log(vp1.size()))~o(n*logn) vector <long long> psum1; vector <long long> psum2; long long sm1=0; long long sm2=A; vp[1].push_back({0,-1}); vp[2].push_back({0,-1}); sort(vp[1].begin(),vp[1].end()); sort(vp[2].begin(),vp[2].end()); for (long long i=0; i<vp[1].size(); i++){ sm1+=vp[1][i].first; psum1.push_back(sm1); } for (long long i=0; i<vp[2].size(); i++){ sm2-=vp[2][i].first; if (vp[2][i].first==0){ psum2.push_back(sm2); } else if (sm2>=0){ sm2=sm2*2; sm2=min(sm2,MX); psum2.push_back(sm2); } else{ psum2.push_back(-1); } } vector <int> ans; long long k=0,maxh=0,maxpos=-1; for (long long i=0; i<vp[2].size(); i++){ if (psum2[i]>=0){ long long kk=fnd(psum1,psum2[i]); if (kk+i>=maxh){maxpos=i;maxh=kk+i;} }} for (long long i=1; i<=maxpos; i++){ ans.push_back(vp[2][i].second); } for (long long i=1; i<=maxh-maxpos; i++){ ans.push_back(vp[1][i].second); } return (ans);} //for online compiler use the /* */ around the <=70 subtask solution //because online compilers dont have that much space else if (P.size()<=70){ //subtask 4 / 15 points / N ≤ 70 //it is obvious it is o(n^4) and we just have to make a 4d dp with with the info we got from //the second and third subtask. One thing to note is that we dont really have to care abt the //negative value until the end because the negative values wont turn positive ever. for (int i = 1; i <= 4; i++) { sort(vp[i].begin(), vp[i].end()); } long long dp[71][71][71][71]; for (int i=0; i<71; i++){ for (int j=0; j<71; j++){ for (int k=0; k<71; k++){ for (int l=0; l<71; l++){dp[i][j][k][l]=-1;}}}} dp[0][0][0][0]=A; vector<int> vvv={0,0,0,0}; int idx[5] = {0}; for (idx[1]=0; idx[1]<=vp[1].size(); idx[1]++){ for (idx[2]=0; idx[2]<=vp[2].size(); idx[2]++){ for (idx[3]=0; idx[3]<=vp[3].size(); idx[3]++){ for (idx[4]=0; idx[4]<=vp[4].size(); idx[4]++){ long long &tttt=dp[idx[1]][idx[2]][idx[3]][idx[4]]; for (int i=1; i<=4; i++) { if (idx[i]==0)continue; long long prv=dp[idx[1]-(i==1)][idx[2]-(i==2)][idx[3]-(i==3)][idx[4]-(i==4)]; tttt=max(tttt,(prv-vp[i][idx[i]-1].first)*i); } tttt=min(tttt,MX); long long SM=0; for (int i=0; i<vvv.size(); i++){SM+=vvv[i];} if(tttt>=0&&idx[1]+idx[2]+idx[3]+idx[4]>SM){vvv={idx[1],idx[2],idx[3],idx[4]};} } } } } vector<int> ans; while (vvv[0]+vvv[1]+vvv[2]+vvv[3]){ long long rem=dp[vvv[0]][vvv[1]][vvv[2]][vvv[3]]; for (int i=1; i<=4; i++) { if (vvv[i-1]==0)continue; long long prv=dp[vvv[0]-(i==1)][vvv[1]-(i==2)][vvv[2]-(i==3)][vvv[3]-(i==4)]; if (min((prv-vp[i][vvv[i-1]-1].first)*i,MX)==rem) { ans.push_back(vp[i][vvv[i-1]-1].second); vvv[i-1]--; break; } } } reverse(ans.begin(),ans.end()); return ans; } if (sub_task_6==1){ //subtask 6 / 16 points / (A − P[i]) ⋅ T[i] < A for each i such that 0 ≤ i < N. //Even though it looks like this inequality wont give us much this is actually rapidly decreasing //like those 1/x functions (IF WE REMOVE THE T[i]==1) becasue for a random time event where the current //money we have is A-x then (A-x-P[i])*T[i]<A-x*t[i] hence we can see it is decreasing rapidly //we can use the implementation we did on our subtask 2-3 the binary search.and the subtask 4 for (int i=1; i<=4; i++){sort(vp[i].begin(), vp[i].end());} vector <long long> psum1; long long sm1=0; vp[1].push_back({0,-1}); for (long long i=0; i<vp[1].size(); i++){ sm1+=vp[1][i].first; psum1.push_back(sm1); } long long dp[21][21][21]; for (int j=0; j<21; j++){ for (int k=0; k<21; k++){ for (int l=0; l<21; l++){dp[j][k][l]=-1;}}} dp[0][0][0]=A; vector<long long> vvv={0,0,0}; long long vvv1=fnd(psum1,0); int idx[5] = {0}; for (idx[2]=0; idx[2]<=vp[2].size() && idx[2]<21; idx[2]++){ for (idx[3]=0; idx[3]<=vp[3].size() && idx[3]<21; idx[3]++){ for (idx[4]=0; idx[4]<=vp[4].size() && idx[4]<21; idx[4]++){ long long &tttt=dp[idx[2]][idx[3]][idx[4]]; for (int i=2; i<=4; i++) { if (idx[i]==0)continue; long long prv=dp[idx[2]-(i==2)][idx[3]-(i==3)][idx[4]-(i==4)]; tttt=max(tttt,(prv-vp[i][idx[i]-1].first)*i); } tttt=min(tttt,MX); long long SM=0; for (int i=0; i<vvv.size(); i++){SM+=vvv[i];} SM+=vvv1; if(tttt>=0&&fnd(psum1,tttt)+idx[2]+idx[3]+idx[4]>SM){vvv={idx[2],idx[3],idx[4]};vvv1={fnd(psum1,tttt)};} } } } vector<int> ans; for (int i=vvv1-1; i>=0; i--){ ans.push_back(vp[1][i].second); } //cout<<vvv[0]<<' '<<vvv[1]<<' '<<vvv[2]<<' '<<vvv[3]<<"\n"; while (vvv[0]+vvv[1]+vvv[2]){ long long rem=dp[vvv[0]][vvv[1]][vvv[2]]; for (int i=1; i<=3; i++) { if (vvv[i-1]==0)continue; long long prv=dp[vvv[0]-(i==1)][vvv[1]-(i==2)][vvv[2]-(i==3)]; if (min((prv-vp[i+1][vvv[i-1]-1].first)*(i+1),MX)==rem) { ans.push_back(vp[i][vvv[i-1]-1].second); vvv[i-1]--; break; } //cout<<vvv1<<' '<<vvv[0]<<' '<<vvv[1]<<" "<<vvv[2]<<" "<<prv<<"\n"; } } reverse(ans.begin(),ans.end()); //cout<<"love"; return ans; } else{ //subtask 5 / 27 points / Nayra can buy all N coupons (in some order). //since there is a sequence where we can acquire every coupon we just have to find //a sequence that lets us have all of them hence we will no longer have to deal with some money issues //doing simple algebra gives the formula that if we pick (i,j) over (j,i) then //P[i]*T[i]/(T[i]-1)<P[j]*T[j]/(T[j]-1) long long a = A; vector<int> vv(P.size()); for (int i=0; i<P.size(); i++)vv[i]=i; sort(vv.begin(), vv.end(), [&](int i, int j) { if (T[i]==T[j]) return P[i]<P[j]; return 1ll*P[i]*T[i]*(T[j]-1)<1ll*P[j]*T[j]*(T[i]-1); }); vector<int> ans; for(int i=0; i<P.size(); i++){ if(a>=P[vv[i]]){ a=(a-P[vv[i]])*T[vv[i]]; a=min(a,MX); ans.push_back(vv[i]); } } return ans;} }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...