Submission #1286162

#TimeUsernameProblemLanguageResultExecution timeMemory
1286162eri16Festival (IOI25_festival)C++20
Compilation error
0 ms0 KiB
#include <bits/stdc++.h> //#include "festival.h" using namespace std; long long MX=1e15; long long fnd(vector <long long>& k, long long num){ long long l=0; long long r=k.size()-1; if (num >= k[r]) return r; while (l<r) { long long md=(l+r+1)/2; if (k[md]<=num) l=md; else r=md-1; } return l; } vector<int> max_coupons(long long A,vector<int> P,vector <int> T){ vector <pair<long long,long long>> vp1; vector <pair<long long,long long>> vp2; vector <pair<long long,long long>> vp3; vector <pair<long long,long long>> vp4; for (int i=0; i<P.size(); i++){ if (T[i]==1){vp1.push_back({P[i],i});} if (T[i]==2){vp2.push_back({P[i],i});} if (T[i]==3){vp3.push_back({P[i],i});} if (T[i]==4){vp4.push_back({P[i],i});} } if (vp2.size()==0 && vp3.size()==0 && vp4.size()==0){ //subtask 1 / 5 points / T[i] = 1 for each i such that 0 ≤ i < N //for subtask 1 it is clear that we should sort and just do some o(n) solution. sort(vp1.begin(),vp1.end());vector <int> ans;int k=0; while (A>=0 && k<vp1.size()){A=A-vp1[k].first;ans.push_back(vp1[k].second);k++;} if (A<0)ans.pop_back(); return (ans);} else if (vp3.size()==0 && vp4.size()==0){ //subtask 2 / 7 points / N ≤ 3000; T[i] ≤ 2 for each i such that 0 ≤ i < N. //subtask 3 / 12 points / T[i] ≤ 2 for each i such that 0 ≤ i < N. //both of the subtasks have a common constraint T[i]<=2 hence we will use that to solve both the subtasks //Is there any point in // 1: buying a T[i]==2 coupon after any T[i]==1. // because {X,Y|X is the P[i] where T[i]==1,Y is the P[i] where T[i]==2} // ((A-X)*1-Y)*2<((A-Y)*2-X) where if we simplify it {0<X} hence no need. // Inductively we can say that the structure should be something like (for the T values) 2,2,2,2,1,1,1,1,1 // 2: for any structure if we seperate the 1s and 2s for the T values there can not be any {i,j|0<=i,j<=n-1,j=i+1} // such that P[i]>=P[j] because ((A-P[i])*2-P[j])*2<((A-P[j])*2-P[i])*2 because if we simplify it we get // P[j]<P[Pi] hence we must sort it. // 3: if at any point we have money>=2e14 we can just do anything we want since 2e14>=max(N)*max(P[i]) // //With these two in mind for subtask 2 for every possible ending of the 2 chain //we use our subtask 1 solution to get the length of the max len of our ans if the 2 chain ended there //hence our time complexity is o(vp2.size()*vp1.size())~o(n*n)=o(n^2) // //To get subtask 3 we just add Prefix sum followed by binary search to it. //hence our time complexity is o(vp2.size()*log(vp1.size()))~o(n*logn) vector <long long> psum1; vector <long long> psum2; long long sm1=0; long long sm2=A; vp1.push_back({0,-1}); vp2.push_back({0,-1}); sort(vp1.begin(),vp1.end()); sort(vp2.begin(),vp2.end()); for (long long i=0; i<vp1.size(); i++){ sm1+=vp1[i].first; psum1.push_back(sm1); } for (long long i=0; i<vp2.size(); i++){ sm2-=vp2[i].first; if (vp2[i].first==0){ psum2.push_back(sm2); } else if (sm2>=0){ sm2=sm2*2; sm2=min(sm2,MX); psum2.push_back(sm2); } else{ psum2.push_back(-1); } } vector <int> ans; long long k=0,maxh=0,maxpos=-1; for (long long i=0; i<vp2.size(); i++){ if (psum2[i]>=0){ long long kk=fnd(psum1,psum2[i]); if (kk+i>=maxh){maxpos=i;maxh=kk+i;} }} for (long long i=1; i<=maxpos; i++){ ans.push_back(vp2[i].second); } for (long long i=1; i<=maxh-maxpos; i++){ ans.push_back(vp1[i].second); } return (ans);} else{ //subtask 5 / 27 points / Nayra can buy all N coupons (in some order). //since there is a sequence where we can acquire every coupon //we will no longer have to deal with some money issues and negative money when doing the best money maximizing algorythm //doing simple algebra gives the formula that if we pick (i,j) over (j,i) then //P[i]*T[i]/(T[i]-1)<P[j]*T[j]/(T[j]-1) vector<int> vv(P.size()); for (int i=0; i<P.size(); i++)vv[i]=i; sort(vv.begin(), vv.end(), [&](int i, int j) { if (T[i]==T[j]) return P[i]<P[j]; return 1ll*P[i]*T[i]*(T[j]-1)<1ll*P[j]*T[j]*(T[i]-1); }); vector<int> ans; for(int i=0; i<P.size(); i++){ if(A>=P[vv[i]]){ A=(A-P[vv[i]])*T[vv[i]]; A=min(A,MX); ans.push_back(vv[i]); } } return ans;} }

Compilation message (stderr)

/usr/bin/ld: /tmp/ccrXv1Eg.o: in function `main':
grader.cpp:(.text.startup+0x22a): undefined reference to `max_coupons(int, std::vector<int, std::allocator<int> >, std::vector<int, std::allocator<int> >)'
collect2: error: ld returned 1 exit status