#include <bits/stdc++.h>
using namespace std;
#define ull unsigned long long
#define lll __int128
#define ll long long
const ll mod = 1e9 + 7;
const ll mod1 = 998244353;
const ll naim = 1e9;
const ll max_bit = 60;
const ull tom = ULLONG_MAX;
const ll MAXN = 100005;
const ll LOG = 20;
const ll NAIM = 1e18;
const ll N = 2e6 + 5;
int main() {
#define pb push_back
#define ff first
#define ss second
#define _ << " " <<
#define yes cout<<"YES\n"
#define no cout<<"NO\n"
#define all(x) x.begin(),x.end()
#define rall(x) x.rbegin(),x.rend()
#define BlueCrowner ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define FOR(i, a, b) for (ll i = (a); i < (b); i++)
#define FORD(i, a, b) for (ll i = (a); i >= (b); i--)
// ---------- GCD ----------
auto gcd = [&](ll a, ll b) {
while (b) {
a %= b;
swap(a, b);
}
return a;
};
// ---------- LCM ----------
auto lcm = [&](ll a, ll b) {
return a / gcd(a, b) * b;
};
// ---------- Modular Exponentiation ----------
function<ll(ll, ll, ll)> modpow = [&](ll a, ll b, ll m) {
ll c = 1;
a %= m;
while (b > 0) {
if (b & 1) c = c * a % m;
a = a * a % m;
b >>= 1;
}
return c;
};
// ---------- Modular Inverse (Fermat’s Little Theorem) ----------
function<ll(ll, ll)> modinv = [&](ll a, ll m) {
return modpow(a, m - 2, m);
};
// ---------- Factorials and Inverse Factorials ----------
vector<ll> fact(N), invfact(N);
//a ^ -1
auto pre_fact = [&](ll n = N-1, ll m = mod) {
fact[0] = 1;
for (ll i = 1; i <= n; i++) fact[i] = fact[i-1] * i % m;
invfact[n] = modinv(fact[n], m);
for (ll i = n; i > 0; i--) invfact[i-1] = invfact[i] * i % m;
};
// ---------- nCr ----------
auto nCr = [&](ll n, ll r, ll m = mod) {
if (r < 0 || r > n) return 0LL;
return fact[n] * invfact[r] % m * invfact[n-r] % m;
};
// ---------- Sieve of Eratosthenes ----------
vector<ll> primes;
vector<bool> is_prime(N);
auto sieve = [&](ll n = N-1) {
fill(is_prime.begin(), is_prime.begin() + n + 1, true);
is_prime[0] = is_prime[1] = false;
for (ll i = 2; i * i <= n; i++) {
if (is_prime[i]) {
for (ll j = i * i; j <= n; j += i)
is_prime[j] = false;
}
}
for (ll i = 2; i <= n; i++)
if (is_prime[i]) primes.pb(i);
};
function<void()> solve = [&]() {
ll n; cin >> n;
vector<pair<ll, ll>> a(n * 2); for(auto &x : a) cin >> x.ff >> x.ss;
vector<vector<ll>> cnt(n + 1, vector<ll> (3, 0ll));
ll ans = 0;
FOR(i, 0, 2 * n){
if(a[i].ff < 1 && a[i].ss <= 1) cnt[1][1]++, ans += abs(1 - a[i].ff) + abs(1 - a[i].ss);
else if(a[i].ff < 1 && a[i].ss >= 2) cnt[1][2]++, ans += abs(1 - a[i].ff) + abs(2 - a[i].ss);
else if(a[i].ff > n && a[i].ss <= 1) cnt[n][1]++, ans += abs(n - a[i].ff) + abs(1 - a[i].ss);
else if(a[i].ff > n && a[i].ss >= 2) cnt[n][2]++, ans += abs(n - a[i].ff) + abs(2 - a[i].ss);
else if(a[i].ss <= 1) cnt[a[i].ff][1]++, ans += abs(1 - a[i].ss);
else cnt[a[i].ff][2]++, ans += abs(2 - a[i].ss);
}
ll d1 = 0, d2 = 0;
FOR(x, 1, n + 1){
d1 += cnt[x][1] - 1;
d2 += cnt[x][2] - 1;
if(d1 > 0 && d2 < 0){
ll t = min(d1, -d2);
ans += t;
d1 -= t;
d2 += t;
}
else if(d1 < 0 && d2 > 0){
ll t = min(-d1, d2);
ans += t;
d1 += t;
d2 -= t;
}
ans += abs(d1) + abs(d2);
}
cout << ans << '\n';
};
BlueCrowner;
int t = 1;
//cin >> t;
while (t--) {
solve();
}
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |