Submission #1272018

#TimeUsernameProblemLanguageResultExecution timeMemory
1272018sweetwibu2k8Džumbus (COCI19_dzumbus)C++20
0 / 110
27 ms2776 KiB
// dzumbus_fixed.cpp #include <bits/stdc++.h> using namespace std; using ll = long long; const ll INF = (1LL<<60); int N, M; vector<ll> D; vector<vector<int>> g; struct Triple { vector<ll> dp0; // u not chosen: dp0[k] = min cost to have k good nodes in subtree vector<ll> dp1; // u chosen but not yet satisfied by child (pending): dp1[k] = min cost, k good nodes in subtree (not counting u) vector<ll> dp2; // u chosen and already satisfied by some child (so u is counted): dp2[k] = min cost, k good nodes in subtree (including u) }; Triple dfs(int u, int p){ Triple cur; cur.dp0 = {0}; // 0 good nodes, cost 0 cur.dp1 = {D[u]}; // 0 good nodes yet, but u chosen cost D[u] cur.dp2 = {}; // impossible initially for (int v : g[u]) if (v != p){ Triple ch = dfs(v, u); int s0 = (int)cur.dp0.size() - 1; int s1 = (int)cur.dp1.size() - 1; int s2 = (int)cur.dp2.size() - 1; int c0 = (int)ch.dp0.size() - 1; int c1 = (int)ch.dp1.size() - 1; int c2 = (int)ch.dp2.size() - 1; int maxc_for_any = max({c0, c1, c2, 0}); int new_max = max({s0, s1, s2, 0}) + maxc_for_any + 2; // +2 to be safe for transitions that add +2 vector<ll> ndp0(new_max+1, INF), ndp1(new_max+1, INF), ndp2(new_max+1, INF); auto cost = [&](const vector<ll> &vec, int j)->ll{ if (j < 0) return INF; if (j >= (int)vec.size()) return INF; return vec[j]; }; // Merge for dp0: parent not chosen -> child can be in dp0 or dp2 for (int i = 0; i <= s0; ++i){ ll base = cost(cur.dp0, i); if (base >= INF) continue; for (int j = 0; j <= max(c0, c2); ++j){ ll cst = min(cost(ch.dp0, j), cost(ch.dp2, j)); if (cst >= INF) continue; ndp0[i + j] = min(ndp0[i + j], base + cst); } } // Merge for dp1: parent chosen but pending -> child dp0 or dp2 keeps parent pending // child dp1 connects parent and child -> goes to dp2 and adds +2 (child becomes good +1, parent becomes good +1) for (int i = 0; i <= s1; ++i){ ll base = cost(cur.dp1, i); if (base >= INF) continue; for (int j = 0; j <= max({c0,c1,c2}); ++j){ // child dp0 if (cost(ch.dp0, j) < INF) ndp1[i + j] = min(ndp1[i + j], base + cost(ch.dp0, j)); // child dp2 if (cost(ch.dp2, j) < INF) ndp1[i + j] = min(ndp1[i + j], base + cost(ch.dp2, j)); // child dp1 => resolves both child and parent -> move to dp2 if (cost(ch.dp1, j) < INF){ ndp2[i + j + 2] = min(ndp2[i + j + 2], base + cost(ch.dp1, j)); } } } // Merge for dp2: parent already satisfied -> child dp0 or dp2 add j goods; child dp1 will be satisfied by parent and add +1 if (!cur.dp2.empty()){ for (int i = 0; i <= s2; ++i){ ll base = cost(cur.dp2, i); if (base >= INF) continue; for (int j = 0; j <= max({c0,c1,c2}); ++j){ if (cost(ch.dp0, j) < INF) ndp2[i + j] = min(ndp2[i + j], base + cost(ch.dp0, j)); if (cost(ch.dp2, j) < INF) ndp2[i + j] = min(ndp2[i + j], base + cost(ch.dp2, j)); if (cost(ch.dp1, j) < INF) ndp2[i + j + 1] = min(ndp2[i + j + 1], base + cost(ch.dp1, j)); } } } // Trim trailing INF and assign back auto trim = [&](vector<ll> &v){ int last = (int)v.size() - 1; while (last >= 0 && v[last] >= INF) --last; v.resize(last+1); }; trim(ndp0); trim(ndp1); trim(ndp2); if (ndp0.empty()) ndp0 = {INF}; if (ndp1.empty()) ndp1 = {INF}; // ndp2 may legitimately be empty cur.dp0.swap(ndp0); cur.dp1.swap(ndp1); cur.dp2.swap(ndp2); } return cur; } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); if (!(cin >> N >> M)) return 0; D.assign(N, 0); for (int i = 0; i < N; ++i) cin >> D[i]; g.assign(N, {}); for (int i = 0; i < M; ++i){ int a,b; cin >> a >> b; --a; --b; g[a].push_back(b); g[b].push_back(a); } int Q; cin >> Q; vector<ll> S(Q); for (int i = 0; i < Q; ++i) cin >> S[i]; vector<int> vis(N, 0); vector<vector<ll>> comps; for (int i = 0; i < N; ++i) if (!vis[i]){ // collect component nodes vector<int> stack = {i}; vis[i] = 1; for (int idx = 0; idx < (int)stack.size(); ++idx){ int u = stack[idx]; for (int v : g[u]) if (!vis[v]){ vis[v] = 1; stack.push_back(v); } } // run dfs dp with root i Triple t = dfs(i, -1); int maxc = 0; if (!t.dp0.empty()) maxc = max(maxc, (int)t.dp0.size()-1); if (!t.dp2.empty()) maxc = max(maxc, (int)t.dp2.size()-1); vector<ll> best(maxc+1, INF); for (int c = 0; c <= maxc; ++c){ ll val = INF; if (c < (int)t.dp0.size()) val = min(val, t.dp0[c]); if (c < (int)t.dp2.size()) val = min(val, t.dp2[c]); best[c] = val; } // ensure best[0]=0 if (best.size() == 0) best = {0}; else best[0] = min(best[0], 0LL); comps.push_back(best); } // global knapsack by value vector<ll> dp(N+1, INF); dp[0] = 0; for (auto &best : comps){ vector<ll> ndp(N+1, INF); int sz = (int)best.size() - 1; for (int have = 0; have <= N; ++have){ if (dp[have] >= INF) continue; for (int c = 0; c <= sz; ++c){ if (best[c] >= INF) continue; if (have + c <= N) ndp[have + c] = min(ndp[have + c], dp[have] + best[c]); } } dp.swap(ndp); } for (int qi = 0; qi < Q; ++qi){ ll s = S[qi]; int ans = 0; for (int v = 0; v <= N; ++v) if (dp[v] <= s) ans = v; cout << ans << "\n"; } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...