Submission #1214541

#TimeUsernameProblemLanguageResultExecution timeMemory
1214541nrg_studiotimeismoney (balkan11_timeismoney)C++20
50 / 100
2097 ms131072 KiB
#include <bits/stdc++.h> using namespace std; #define ll long long #define pb push_back #define pii pair<int,int> #define f first #define s second #define chmin(a, b) a = min(a,b) #define chmax(a, b) a = max(a,b) #define FOR(i, a, b) for (int i = (a); i < (b); i++) #define F0R(i, a) for (int i = 0; i < (a); i++) #define all(x) x.begin(),x.end() #define vec vector const int MAX_N = 200, MAX_M = 10000; struct DSU { int par[MAX_N], sz[MAX_N]; int get(int x) {return par[x]==x ? x : par[x]=get(par[x]);} bool unite(int a, int b) { a = get(a); b = get(b); if (a==b) {return false;} if (sz[a]<sz[b]) {swap(a,b);} par[b] = a; sz[a] += sz[b]; return true; } void reset() { iota(par,par+MAX_N,0); memset(sz,1,sizeof(sz)); } }; struct Edge { int u, v, t, c; }; bool cmp1(const Edge& a, const Edge& b) {return a.t<b.t;} bool cmp2(const Edge& a, const Edge& b) {return a.c<b.c;} Edge ed[MAX_M]; DSU dsu; ll c_ans = 1e9, t_ans = 1e9, c_tot, t_tot; Edge ans[MAX_N], cand[MAX_N]; int n, m; ll scalex, scaley; bool cmp3(const Edge& a, const Edge& b) {return scalex*a.t+scaley*a.c<scalex*b.t+scaley*b.c;} void calc() { dsu.reset(); c_tot = 0, t_tot = 0; for (int i=0,ptr=0;i<m;i++) { if (dsu.unite(ed[i].u,ed[i].v)) { cand[ptr++] = ed[i]; c_tot += ed[i].c; t_tot += ed[i].t; if (ptr==n-1) {break;} } } if (c_tot*t_tot<c_ans*t_ans) { c_ans = c_tot; t_ans = t_tot; copy(cand,cand+n-1,ans); } } void solve(ll ax, ll ay, ll bx, ll by) { scalex = ay-by; scaley = bx-ax; sort(ed,ed+m,cmp3); calc(); ll cx = t_tot, cy = c_tot; //cout << cx << ' ' << cy << '\n'; if ((bx-ax)*(cy-ay)-(by-ay)*(cx-ax)<=0 && !(cx==ax&&cy==ay) && !(cx==bx&&cy==by)) { solve(ax,ay,cx,cy); solve(cx,cy,bx,by); } } int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n >> m; for (int i=0;i<m;i++) {cin >> ed[i].u >> ed[i].v >> ed[i].t >> ed[i].c;} sort(ed,ed+m,cmp1); calc(); ll ax = t_tot, ay = c_tot; sort(ed,ed+m,cmp2); calc(); ll bx = t_tot, by = c_tot; //cout << ax<<' ' <<ay<<' '<<bx<<' '<<by<<'\n'; solve(ax,ay,bx,by); cout << t_ans << ' ' << c_ans << '\n'; for (int i=0;i<n-1;i++) {cout << ans[i].u << ' ' << ans[i].v << '\n';} /* set of points (C,T) take the MST minimizing C, and the MST minimizing T; then all possible answer candidates are on the lower hull between these points algorithm: take A, B, find the point under AB with maximum absolute distance call it C, then recurse (A,C) and (C,B) (i derived quickhull?? (w/ hint on using dnc)) claim: C is always between A and B proof: is C is not between A and B, then either A or B isn't on the hull so distance to AB is just perpendicular length = maximizing area of triangle ABC (B-A)x(C-A) = (Bx-Ax)(Cy-Ay)-(By-Ay)(Cx-Ax) minimize Equivalent to finding a point C with the minimum value of aCx+bCy for constants a,b verify that C lies between A and B Holy fuck it works find C can be done with mst algorithm in o(mlogm) crazy time complexity: NTMlogM i hope it runs */ }
#Verdict Execution timeMemoryGrader output
Fetching results...