Submission #1195013

#TimeUsernameProblemLanguageResultExecution timeMemory
1195013ainunnajibRainforest Jumps (APIO21_jumps)C++20
33 / 100
4094 ms16776 KiB
#include <vector> // For std::vector #include <queue> // For std::queue #include <stack> // For std::stack #include <algorithm> // For std::min #include <limits> // For std::numeric_limits // Global variables to store tree information and precomputed data int N_global; // Number of trees std::vector<int> H_global; // Heights of the trees // L[i]: index of the nearest tree to the left of 'i' with height > H[i]. -1 if no such tree exists. [cite: 5] // R[i]: index of the nearest tree to the right of 'i' with height > H[i]. -1 if no such tree exists. [cite: 6] std::vector<int> L, R; // Reversed graph adjacency list. [cite: 5, 6] // rev_adj[j] contains all indices 'i' such that the orangutan can jump FROM 'i' TO 'j'. // This is used for the backward BFS. std::vector<std::vector<int>> rev_adj; // Define a constant for infinity, used for unreachable nodes in BFS. const int INF = std::numeric_limits<int>::max(); /** * @brief Preprocessing function called once before any queries. * * Calculates the possible jump destinations (L[i] and R[i]) for each tree 'i' * using monotonic stacks. * Builds the reversed graph representation needed for backward BFS. * Complexity: O(N) * * @param N The number of trees. [cite: 9] * @param H A vector containing the heights of the N trees. [cite: 10] */ void init(int N, std::vector<int> H) { N_global = N; H_global = H; // Store N and H globally for access in minimum_jumps L.assign(N, -1); // Initialize left jump targets to -1 (no jump) R.assign(N, -1); // Initialize right jump targets to -1 rev_adj.assign(N, std::vector<int>()); // Initialize the reversed adjacency list // --- Calculate L[i] (nearest taller tree to the left) --- std::stack<int> st_left; // Monotonic stack storing indices in decreasing height order for (int i = 0; i < N; ++i) { // Pop elements from the stack that are shorter than or equal to the current tree H[i] // Ensures the stack top (if exists) is the nearest element to the left *taller* than H[i] while (!st_left.empty() && H[st_left.top()] <= H[i]) { st_left.pop(); } // If the stack is not empty, the top element is the target L[i] if (!st_left.empty()) { L[i] = st_left.top(); } // Push the current tree index onto the stack st_left.push(i); } // --- Calculate R[i] (nearest taller tree to the right) --- std::stack<int> st_right; // Monotonic stack for (int i = N - 1; i >= 0; --i) { // Iterate from right to left // Pop elements shorter than or equal to H[i] while (!st_right.empty() && H[st_right.top()] <= H[i]) { st_right.pop(); } // If stack not empty, top is the target R[i] if (!st_right.empty()) { R[i] = st_right.top(); } // Push current index st_right.push(i); } // --- Build the reversed graph adjacency list `rev_adj` --- // For each possible jump i -> L[i] or i -> R[i] in the original graph, // add a corresponding reversed edge L[i] -> i or R[i] -> i to rev_adj. for (int i = 0; i < N; ++i) { if (L[i] != -1) { // If a jump from i to L[i] is possible, add edge L[i] -> i in reversed graph rev_adj[L[i]].push_back(i); } if (R[i] != -1) { // If a jump from i to R[i] is possible, add edge R[i] -> i in reversed graph rev_adj[R[i]].push_back(i); } } } /** * @brief Calculates the minimum number of jumps required. * * Finds the minimum jumps needed to get from any starting tree 's' in the range [A, B] * to any ending tree 'e' in the range [C, D]. [cite: 7, 8] * Uses Breadth-First Search (BFS) starting *backwards* from the target range [C, D] * on the reversed graph. * Complexity: O(N) per query, as BFS visits each node/edge at most once. * * @param A The start index of the starting range. [cite: 12] * @param B The end index of the starting range. [cite: 12] * @param C The start index of the ending range. [cite: 13] * @param D The end index of the ending range. [cite: 13] * @return The minimum number of jumps, or -1 if it's impossible. [cite: 14] */ int minimum_jumps(int A, int B, int C, int D) { // 'd[i]' will store the minimum jumps from tree 'i' to *any* tree in the range [C, D]. std::vector<int> d(N_global, INF); // Initialize distances to infinity std::queue<int> q; // Queue for BFS // --- Initialize BFS --- // Start BFS from all trees in the target range [C, D]. // Set their distance to 0 and add them to the queue. for (int i = C; i <= D; ++i) { // Check if already initialized (d[i] might be set if C=D and the node is added multiple times, though loop structure prevents this) if (d[i] == INF) { d[i] = 0; // Distance from a target node to the target set is 0 q.push(i); // Add to BFS queue } } // --- Perform Backward BFS --- // Explore the graph using the reversed edges (rev_adj). while (!q.empty()) { int u = q.front(); // Current node being processed q.pop(); // Iterate through all nodes 'v' that can jump *to* 'u' in the original graph // (represented by edges u -> v in the reversed graph) for (int v : rev_adj[u]) { // If node 'v' has not been reached yet (distance is INF) if (d[v] == INF) { // Update the distance to 'v' (one more jump than distance to 'u') d[v] = d[u] + 1; // Add 'v' to the queue to explore its predecessors q.push(v); } } } // --- Find the minimum jumps from the starting range [A, B] --- int min_jumps = INF; // Initialize minimum jumps found so far // Iterate through all possible starting trees 's' in the range [A, B] for (int i = A; i <= B; ++i) { // If tree 'i' can reach the target range (d[i] is not INF) if (d[i] != INF) { // Update the overall minimum jumps if the path from 'i' is shorter min_jumps = std::min(min_jumps, d[i]); } } // --- Return the result --- // If min_jumps is still INF, no path exists from [A, B] to [C, D] if (min_jumps == INF) { return -1; // Impossible [cite: 14, 21] } else { // Otherwise, return the minimum number of jumps found [cite: 8] return min_jumps; } }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...