Submission #1193229

#TimeUsernameProblemLanguageResultExecution timeMemory
1193229vux2codeCommuter Pass (JOI18_commuter_pass)C++20
16 / 100
299 ms29236 KiB
#include <bits/stdc++.h> using namespace std; using ll = long long; const ll INF = numeric_limits<ll>::max() / 4; // Standard Dijkstra to compute shortest paths vector<ll> dijkstra(int src, const vector<vector<pair<int,ll>>> &adj) { int n = adj.size(); vector<ll> dist(n, INF); using pli = pair<ll,int>; priority_queue<pli, vector<pli>, greater<pli>> pq; dist[src] = 0; pq.emplace(0, src); while (!pq.empty()) { auto [d, u] = pq.top(); pq.pop(); if (d != dist[u]) continue; for (auto &[v, w] : adj[u]) { if (dist[v] > d + w) { dist[v] = d + w; pq.emplace(dist[v], v); } } } return dist; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int N, M; cin >> N >> M; int S, T; cin >> S >> T; int U, V; cin >> U >> V; vector<vector<pair<int,ll>>> adj(N + 1); vector<tuple<int,int,ll>> edges; edges.reserve(M); for (int i = 0; i < M; ++i) { int a, b; ll c; cin >> a >> b >> c; adj[a].emplace_back(b, c); adj[b].emplace_back(a, c); edges.emplace_back(a, b, c); } // Compute shortest distances from S, T, U, and V auto dS = dijkstra(S, adj); auto dT = dijkstra(T, adj); auto dU = dijkstra(U, adj); auto dV = dijkstra(V, adj); ll bestST = dS[T]; // Build DAG of edges on some shortest path from S to T vector<vector<int>> dag(N + 1), dag_rev(N + 1); for (auto &[a, b, c] : edges) { if (dS[a] + c + dT[b] == bestST) { dag[a].push_back(b); dag_rev[b].push_back(a); } if (dS[b] + c + dT[a] == bestST) { dag[b].push_back(a); dag_rev[a].push_back(b); } } // Mark nodes reachable from S and reaching T in the DAG vector<char> fromS(N + 1, false), toT(N + 1, false); queue<int> q; fromS[S] = true; q.push(S); while (!q.empty()) { int u = q.front(); q.pop(); for (int v : dag[u]) { if (!fromS[v]) { fromS[v] = true; q.push(v); } } } toT[T] = true; q.push(T); while (!q.empty()) { int u = q.front(); q.pop(); for (int v : dag_rev[u]) { if (!toT[v]) { toT[v] = true; q.push(v); } } } // Collect all nodes on some S-T shortest path vector<int> sp_nodes; for (int i = 1; i <= N; ++i) { if (fromS[i] && toT[i]) sp_nodes.push_back(i); } // Sort by distance from S to impose topological order sort(sp_nodes.begin(), sp_nodes.end(), [&](int a, int b) { return dS[a] < dS[b]; }); // DP: Bmin[u] = minimal distance dV[x] over all x reachable from u in DAG vector<ll> Bmin(N + 1, INF); for (int u : sp_nodes) { Bmin[u] = dV[u]; } for (int i = (int)sp_nodes.size() - 1; i >= 0; --i) { int u = sp_nodes[i]; for (int v : dag[u]) { if (toT[v]) { Bmin[u] = min(Bmin[u], Bmin[v]); } } } // Answer: either no pass (dU[V]) or boarding at some u and exiting at the best downstream node ll answer = dU[V]; for (int u : sp_nodes) { if (dU[u] < INF && Bmin[u] < INF) { answer = min(answer, dU[u] + Bmin[u]); } } cout << answer << '\n'; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...