Submission #1189499

#TimeUsernameProblemLanguageResultExecution timeMemory
1189499avighnaTwo Dishes (JOI19_dishes)C++20
0 / 100
10089 ms56908 KiB
#include <bits/stdc++.h> // lazy operations => add to range, max to range // query => return max in range template <typename T> class LazySegmentTree { private: const T max_idt = -1e15; public: std::vector<T> seg, lazy_add, lazy_max; int n; LazySegmentTree(int n) : n(n) { seg.resize(4 * n, max_idt); lazy_add.resize(8 * n, 0); lazy_max.resize(8 * n, max_idt); } void lazy_update(int v) { // for max if (lazy_max[v] != max_idt) { lazy_add[2 * v] = lazy_add[2 * v + 1] = 0; seg[v] = std::max(seg[v], lazy_max[v]); lazy_max[2 * v] = std::max(lazy_max[2 * v], lazy_max[v]); lazy_max[2 * v + 1] = std::max(lazy_max[2 * v + 1], lazy_max[v]); lazy_max[v] = max_idt; } // for add seg[v] += lazy_add[v]; lazy_add[2 * v] += lazy_add[v]; lazy_add[2 * v + 1] += lazy_add[v]; lazy_add[v] = 0; } void add(int v, int tl, int tr, int l, int r, T del) { lazy_update(v); // [tl, tr] [l, r] or [l, r] [tl, tr] if (tr < l or r < tl) { return; } // [l [tl, tr] r] if (l <= tl and tr <= r) { lazy_add[v] += del; lazy_update(v); return; } int tm = (tl + tr) / 2; add(2 * v, tl, tm, l, r, del); add(2 * v + 1, tm + 1, tr, l, r, del); seg[v] = std::max(seg[2 * v], seg[2 * v + 1]); } void add(int l, int r, T del) { add(1, 0, n - 1, l, r, del); } void set_max(int v, int tl, int tr, int l, int r, T x) { lazy_update(v); if (tr < l or r < tl) { return; } if (l <= tl and tr <= r) { lazy_max[v] = std::max(lazy_max[v] + lazy_add[v], x); lazy_add[v] = 0; lazy_update(v); return; } int tm = (tl + tr) / 2; set_max(2 * v, tl, tm, l, r, x); set_max(2 * v + 1, tm + 1, tr, l, r, x); seg[v] = std::max(seg[2 * v], seg[2 * v + 1]); } void set_max(int l, int r, T x) { set_max(1, 0, n - 1, l, r, x); } T query(int v, int tl, int tr, int l, int r) { lazy_update(v); if (tr < l or r < tl) { return max_idt; } if (l <= tl and tr <= r) { return seg[v]; } int tm = (tl + tr) / 2; return std::max(query(2 * v, tl, tm, l, r), query(2 * v + 1, tm + 1, tr, l, r)); } T query(int l, int r) { return query(1, 0, n - 1, l, r); } }; int main() { // LazySegmentTree<long long> tree(5); // tree.set_max(0, 4, 0); // // for (int i = 0; i < 5; ++i) { // // std::cout << tree.query(i, i) << " \n"[i == 4]; // // } // tree.add(0, 2, 3); // // for (int i = 0; i < 5; ++i) { // // std::cout << tree.query(i, i) << " \n"[i == 4]; // // } // tree.set_max(2, 3, 4); // tree.add(2, 3, 1); // // for (int i = 0; i < 5; ++i) { // // std::cout << tree.query(i, i) << " \n"[i == 4]; // // } // tree.set_max(1, 2, 4); // for (int i = 0; i < 5; ++i) { // std::cout << tree.query(i, i) << " \n"[i == 4]; // } // return 0; int n, m; std::cin >> n >> m; std::vector<long long> a(n), s(n), p(n); for (int i = 0; i < n; ++i) { std::cin >> a[i] >> s[i] >> p[i]; } std::vector<long long> b(m), t(m), q(m); for (int i = 0; i < m; ++i) { std::cin >> b[i] >> t[i] >> q[i]; } std::vector<long long> p_a(n), p_b(m); std::partial_sum(a.begin(), a.end(), p_a.begin()); std::partial_sum(b.begin(), b.end(), p_b.begin()); // pts_y[some x coord] = vector of {y, val} std::vector<std::vector<std::pair<int, int>>> pts_y(n + 1); for (int i = 0; i < n; ++i) { // for i, what is the max j such that we still get p[i] points? // basically, p_a[i] + p_b[j] <= s[i] // ==> min j such that p_a[i] + p_b[j] > s[i], then -1 // p_b[j] > s[i] - p_a[i] auto it = std::upper_bound(p_b.begin(), p_b.end(), s[i] - p_a[i]); // point is (i, max_j). we get p[i] points if we reach i before max_j. so // we're above our path. // the way to gurantee that we're below the path is to pass through point (i // - 1, max_j + 1) (and have this below our path). all other points that // gurantee this can be reached from this one. so we can just assign a score // of -p[i] to this. pts_y[std::max(0, i - 1)].push_back({it - p_b.begin(), -p[i]}); } for (int j = 0; j < m; ++j) { // for j, what is the max i such that we still get q[j] points? // p_b[j] + p_a[i] <= t[j] // ==> min i such that p_b[j] + p_a[i] > t[j] // p_a[i] > t[j] - p_b[j] auto it = std::upper_bound(p_a.begin(), p_a.end(), t[j] - p_b[j]); if (it == p_a.begin()) { continue; } // point is (max_i, j). we get q[j] points if we reach j before max_i. so we // reach max_i after j. so we're below our path. pts_y[it - p_a.begin() - 1].push_back({j, q[j]}); } // std::cout << "points:\n"; LazySegmentTree<long long> st(m + 1); st.set_max(0, m, 0); for (int i = n; i >= 0; --i) { std::sort(pts_y[i].rbegin(), pts_y[i].rend()); // dp[i] = dp[i + 1] + [new points at x=i] for (auto &[y, val] : pts_y[i]) { st.add(y, m, val); } // dp[i][j] = max(dp[i][j], dp[i][j + 1]) for (auto &[y, val] : pts_y[i]) { st.set_max(0, y, st.query(y, y)); } // std::cout << "dp array: "; for (int j = 0; j <= m; ++j) { st.query(j, j); } // std::cout << '\n'; } std::cout << std::accumulate(p.begin(), p.end(), 0LL) + st.query(0, 0) << '\n'; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...