Submission #1166334

#TimeUsernameProblemLanguageResultExecution timeMemory
1166334merciless_lassieCommuter Pass (JOI18_commuter_pass)C++20
31 / 100
242 ms22264 KiB
#include "bits/stdc++.h" using namespace std; #define int long long const int N = 1e5 + 5; const int INF = 1e18; int n, m; int s, t, u, v; vector<pair<int, int>> graph[N]; map<pair<int, int>, bool> is_on_shortest_path; // Find shortest path from src to all nodes vector<int> dijkstra(int src) { vector<int> dist(n + 1, INF); priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; dist[src] = 0; pq.push({0, src}); while (!pq.empty()) { int d = pq.top().first; int node = pq.top().second; pq.pop(); if (d > dist[node]) continue; for (auto edge : graph[node]) { int next = edge.first; int weight = edge.second; if (dist[node] + weight < dist[next]) { dist[next] = dist[node] + weight; pq.push({dist[next], next}); } } } return dist; } int solve() { // Get shortest paths vector<int> dist_from_s = dijkstra(s); vector<int> dist_from_t = dijkstra(t); int shortest_s_to_t = dist_from_s[t]; // Mark edges on any shortest path from s to t for (int i = 1; i <= n; i++) { for (auto edge : graph[i]) { int j = edge.first; int weight = edge.second; // Check if this edge is part of any shortest path from s to t if (dist_from_s[i] + weight + dist_from_t[j] == shortest_s_to_t || dist_from_s[j] + weight + dist_from_t[i] == shortest_s_to_t) { // Store both edge directions if (i < j) { is_on_shortest_path[{i, j}] = true; } else { is_on_shortest_path[{j, i}] = true; } } } } // Find shortest path from u to v with free edges vector<int> dist(n + 1, INF); priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; dist[u] = 0; pq.push({0, u}); while (!pq.empty()) { int d = pq.top().first; int node = pq.top().second; pq.pop(); if (d > dist[node]) continue; for (auto edge : graph[node]) { int next = edge.first; int weight = edge.second; // Create a canonical edge representation (smaller node first) pair<int, int> edge_key = (node < next) ? make_pair(node, next) : make_pair(next, node); // If edge is on shortest path, cost is 0, otherwise it's the original weight int cost = is_on_shortest_path.count(edge_key) ? 0 : weight; if (dist[node] + cost < dist[next]) { dist[next] = dist[node] + cost; pq.push({dist[next], next}); } } } return dist[v]; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n >> m; cin >> s >> t >> u >> v; for (int i = 0; i < m; i++) { int a, b, c; cin >> a >> b >> c; graph[a].push_back({b, c}); graph[b].push_back({a, c}); } cout << solve() << endl; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...