#include <bits/stdc++.h>
using namespace std;
struct Point {
int x, y;
};
// Main idea:
// For a candidate k, a valid covering exists if and only if
// (i) for every horizontal strip (between integer y’s) the total length
// of the intersection of the polygon with (-∞, k) is even, and
// (ii) the total area (sum over strips) is divisible by 4.
//
// Since the polygon is axis–aligned with integer vertices, if we take horizontal
// lines at y = r + 0.5 (for integer r between min and max y–values),
// then (because no such line hits a vertex) the intersections come only from vertical edges.
// We precompute for each row the list of x–coordinates where these intersections occur.
// They come in pairs and form intervals. Then for each candidate k we “clip” each interval
// by intersecting it with (-∞, k) and sum the lengths. (Remember that if an interval straddles k,
// we only count the part to the left.)
// Finally, we require that each row’s length is even and the overall area is a multiple of 4.
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int N, M;
cin >> N >> M;
vector<Point> poly(N);
int Ymin = INT_MAX, Ymax = 0;
for (int i = 0; i < N; i++){
cin >> poly[i].x >> poly[i].y;
Ymin = min(Ymin, poly[i].y);
Ymax = max(Ymax, poly[i].y);
}
// The polygon covers the vertical range [Ymin, Ymax].
// We will consider each “row” r corresponding to the horizontal strip [r, r+1]
// for r = Ymin, Ymin+1, …, Ymax-1.
int rows = Ymax - Ymin;
// For each row r, we will compute the x–coordinates where the horizontal line at y = r+0.5
// crosses the polygon. (Since vertices are integers, y = r+0.5 is “generic” and does not hit a vertex.)
vector<vector<int>> rowXs(rows); // rowXs[i] corresponds to y = (Ymin+i) + 0.5.
// Process each edge of the polygon.
// Only vertical edges contribute to intersections with a horizontal line.
for (int i = 0; i < N; i++){
int j = (i+1) % N;
if(poly[i].x == poly[j].x){ // vertical edge
int x = poly[i].x;
int y1 = poly[i].y, y2 = poly[j].y;
if(y1 > y2) swap(y1, y2);
// This vertical edge runs from y1 to y2.
// For each integer row r such that y_mid = r + 0.5 lies in [y1, y2),
// we add x to the list for that row.
int start = y1; // r such that r+0.5 >= y1 => r >= y1 - 0.5, so r >= y1.
int end = y2 - 1; // r such that r+0.5 < y2 => r <= y2 - 1.
for (int r = start; r <= end; r++){
if(r >= Ymin && r < Ymax)
rowXs[r - Ymin].push_back(x);
}
}
}
// For each row, sort the x–coordinates and form intervals.
// Because the polygon is simple the intersections come in pairs.
vector<vector<pair<int,int>>> intervals(rows);
for (int i = 0; i < rows; i++){
vector<int>& xs = rowXs[i];
sort(xs.begin(), xs.end());
for (size_t j = 0; j+1 < xs.size(); j += 2){
int L = xs[j], R = xs[j+1];
intervals[i].push_back({L, R});
}
}
// Now, for each candidate k (0 <= k <= M) we check:
// - For each horizontal strip (row), compute the total length of the intervals
// (from the precomputed list) intersected with (-∞, k).
// - That is, for each interval [L,R], if R <= k add (R-L); if L < k < R add (k - L);
// otherwise add 0.
// - Each row’s total must be even, and the sum over rows (area) must be divisible by 4.
int best = 0;
for (int k = 0; k <= M; k++){
bool valid = true;
long long totalArea = 0;
for (int r = 0; r < rows; r++){
int rowLen = 0;
for (auto &pr : intervals[r]){
int L = pr.first, R = pr.second;
if(R <= k)
rowLen += (R - L);
else if(L < k)
rowLen += (k - L);
// If L >= k, then that interval contributes 0.
}
if(rowLen % 2 != 0){
valid = false;
break;
}
totalArea += rowLen;
}
if(!valid) continue;
if(totalArea % 4 != 0) continue;
best = k; // k is valid
}
cout << best << "\n";
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |