#include <bits/stdc++.h>
//#include "includeall.h"
//#include <ext/pb_ds/assoc_container.hpp>
//#include <ext/pb_ds/tree_policy.hpp>
#define endl '\n'
#define f first
#define s second
#define pb push_back
#define mp make_pair
#define lb lower_bound
#define ub upper_bound
#define input(x) scanf("%lld", &x);
#define input2(x, y) scanf("%lld%lld", &x, &y);
#define input3(x, y, z) scanf("%lld%lld%lld", &x, &y, &z);
#define input4(x, y, z, a) scanf("%lld%lld%lld%lld", &x, &y, &z, &a);
#define print(x, y) printf("%lld%c", x, y);
#define show(x) cerr << #x << " is " << x << endl;
#define show2(x,y) cerr << #x << " is " << x << " " << #y << " is " << y << endl;
#define show3(x,y,z) cerr << #x << " is " << x << " " << #y << " is " << y << " " << #z << " is " << z << endl;
#define all(x) x.begin(), x.end()
#define discretize(x) sort(x.begin(), x.end()); x.erase(unique(x.begin(), x.end()), x.end());
#define FOR(i, x, n) for (ll i =x; i<=n; ++i)
#define RFOR(i, x, n) for (ll i =x; i>=n; --i)
#pragma GCC optimize("O3","unroll-loops")
using namespace std;
mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());
//using namespace __gnu_pbds;
//#define ordered_set tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update>
//#define ordered_multiset tree<int, null_type, less_equal<int>, rb_tree_tag, tree_order_statistics_node_update>
typedef long long ll;
typedef long double ld;
typedef pair<ld, ll> pd;
typedef pair<string, ll> psl;
typedef pair<ll, ll> pi;
typedef pair<pi, ll> pii;
typedef pair<pi, pi> piii;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
ll const INF = 1e18, mod = 1e6 + 3;
ll n, ans = 0;
ll a[1000005], b[1000005];
map<ll, vector<ll> > st, en;
set<ll> cur;
struct node {
ll s, e, m;
ll val;
node * l, * r;
node(ll S, ll E) {
s = S, e = E, m = (s + e) / 2;
if (s != e) {
l = new node(s, m);
r = new node(m + 1, e);
val = min(l->val, r->val);
}
else {val = a[s];}
}
void update(ll X, ll V) {
if (s == e) val = V;
else {
if (X <= m) l -> update(X, V);
else r -> update(X, V);
val = min(l -> val, r -> val);
}
}
ll query(ll S, ll E) {
if (s == S && e == E) return val;
else if (E <= m) return l -> query(S, E);
else if (S >= m + 1) return r -> query(S, E);
else return min(l -> query(S, m), r -> query(m + 1, E));
}
}* root;
ll cal(ll from, ll to)
{
if (cur.empty()) return 0;
ll l = *cur.begin(), r = *prev(cur.end());
ll ans = ((root->query(1, l-1)%mod + root->query(r + 1, n)%mod) % mod)*(to-from)%mod;
if (l==r) return ans;
// assume size >= 2
ans = (ans + (to * (to-from) % mod + ((2*(ll(cur.size())-2) + 1)%mod * ((to + 1)*to/2 % mod - (from + 1)*from/2 % mod + mod) % mod)%mod)%mod)%mod;
return ans;
}
int main()
{
cin >> n;
for (ll i=1; i<=n; ++i) {cin >> a[i]; st[a[i]].pb(i);}
root = new node(1, n);
// calculate final array
b[1] = a[1], b[n] = a[n];
ll idx = max_element(a + 1, a + n + 1)-a;
for (ll i=2; i<=idx; ++i) b[i] = max(b[i-1], a[i]);
for (ll i=n-1; i>=idx; --i) b[i] = max(b[i+1], a[i]);
for (ll i=1; i<=n; ++i)
{
en[b[i]].pb(i);
ans = (ans + ((b[i]-1) * b[i]/2 % mod - (a[i]-1) * a[i]/2 % mod)%mod)%mod; // middle term solved!
//show2(a[i], b[i]);
}
//show(ans);
ll pp = -1;
for (auto u: st)
{
//show(u.f);
if (pp!=-1) ans = (ans + cal(pp, u.f))%mod;
for (ll x: u.s)
{
//show(x);
cur.insert(x);
root->update(x, INF);
}
for (ll x: en[u.f]) cur.erase(x);
pp = u.f;
}
cout << ans << endl;
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |