# | Time | Username | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
1160536 | jus_teng | Travelling Merchant (APIO17_merchant) | C++20 | 1096 ms | 3496 KiB |
#include <bits/stdc++.h>
using namespace std;
/*SPFA algorithm adapted from https://cp-algorithms.com/graph/bellman_ford.html
Binary Search algorithm adapted from https://cp-algorithms.com/num_methods/binary_search.html
Modifications:
- Transformed state space where each node is (market, item state)
- Total number of states is n * (k + 1)
- k + 1 is item purchases
- vector<ld> dist(v, 0) set to 0
- queue<int> q starts with all nodes
- When item is bought at market, state transitions into (market, item owned)
- If an item is sold, (market, 0)
- Positive weight cycles instead of negative ones
- if (dist[u] + weight > dist[nextState] + eps) to maximize profit
- Binary search over lambda*/
typedef long long ll;
typedef double ld;
const ll maxN = 100;
const ll maxK = 1000;
const ld inf = 1e18;
const ld eps = 1e-12;
ll n, m, k;
vector<vector<pair<ll, ll>>> adj;
vector<vector<ll>> b, s;
bool SPFA(ld lambda){
ll v = n * (k + 1);
vector<ld> dist(v, 0);
vector<int> visitCount(v, 0);
vector<bool> inQueue(v, false);
queue<int> q;
for (ll i = 0; i < v; i++){
q.push(i);
inQueue[i] = true;
visitCount[i] = 1;
}
while (!q.empty()){
int u = q.front();
q.pop();
inQueue[u] = false;
ll currentMarket = u / (k + 1);
ll itemState = u % (k + 1);
if (itemState == 0){
for (ll j = 0; j < k; j++){
if (b[currentMarket][j] != -1){
ll nextState = currentMarket * (k + 1) + (j + 1);
ld weight = -b[currentMarket][j] + eps;
if (dist[u] + weight > dist[nextState] + eps){
dist[nextState] = dist[u] + weight;
if (!inQueue[nextState]){
q.push(nextState);
inQueue[nextState] = true;
visitCount[nextState]++;
if (visitCount[nextState] > v){
return true;
}
}
}
}
}
}
else{
ll j = itemState - 1;
if (s[currentMarket][j] != -1){
ll nextState = currentMarket * (k + 1);
ld weight = s[currentMarket][j] + eps;
if (dist[u] + weight > dist[nextState] + eps){
dist[nextState] = dist[u] + weight;
if (!inQueue[nextState]){
q.push(nextState);
inQueue[nextState] = true;
visitCount[nextState]++;
if (visitCount[nextState] > v){
return true;
}
}
}
}
}
for (auto p : adj[currentMarket]){
ll nextMarket = p.first;
ll travelTime = p.second;
ll nextState = nextMarket * (k + 1) + itemState;
ld weight = -lambda * travelTime + eps;
if (dist[u] + weight > dist[nextState] + eps){
dist[nextState] = dist[u] + weight;
if (!inQueue[nextState]){
q.push(nextState);
inQueue[nextState] = true;
visitCount[nextState]++;
if (visitCount[nextState] > v){
return true;
}
}
}
}
}
return false;
}
ll binSearch(){
ld low = 0.0;
ld high = 1e12;
for (int iter = 0; iter < 100; iter++){
ld mid = (low + high) / 2.0;
if (SPFA(mid)){
low = mid;
}
else{
high = mid;
}
}
return (ll)floor(low);
}
int main(){
scanf("%lld %lld %lld", &n, &m, &k);
b.assign(n, vector<ll>(k));
s.assign(n, vector<ll>(k));
adj.resize(n);
for (ll i = 0; i < n; i++){
for (ll j = 0; j < k; j++){
scanf("%lld %lld", &b[i][j], &s[i][j]);
}
}
for (ll i = 0; i < m; i++){
ll from, to, time;
scanf("%lld %lld %lld", &from, &to, &time);
adj[from - 1].emplace_back(to - 1, time);
}
printf("%lld\n", binSearch());
return 0;
}
Compilation message (stderr)
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |