#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define respagold ios_base::sync_with_stdio(0), cin.tie(0);
#define int long long
#define ll long long
#define int2 __int128_t
#define FOR( i, x, n, d ) for( int i = x; i <= n; i += d )
#define FORR( i, x, n, d ) for( int i = x; i >= n; i -= d )
#define F first
#define S second
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x.size())
#define pb push_back
#define ins insert
#define lb lower_bound
#define ub upper_bound
#define pii pair <int, int>
#define mkp make_pair
using namespace std;
using namespace __gnu_pbds;
template<class T> using ordered_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;
const int N = 3e5 + 123;
const int inf = 1e18;
const int mod = 1e9 + 7;
const double eps = 1e-13;
int n, m, k, z, x[N], y[N], rx[N], ry[N], nashel, ans;
vector <int> answ;
mt19937 rng( chrono::steady_clock::now().time_since_epoch().count());
int rand( int l, int r )
{
uniform_int_distribution <int> uid( l, r );
return uid( rng );
}
vector <int> ordx, ordy, del;
ordered_multiset <int> st1, st2;
bool cmpx( int a, int b ) { return x[a] < x[b]; }
bool cmpy( int a, int b ) { return y[a] < y[b]; }
ordered_multiset <int> t[4 * N][2];
void update( int p, int x, int tp, int v = 1, int tl = 1, int tr = n )
{
t[v][tp].ins(x);
if( tl == tr ) return;
int tm = tl + tr >> 1;
if( p <= tm ) update( p, x, tp, v + v, tl, tm );
else update( p, x, tp, v + v + 1, tm + 1, tr );
}
int get( int l, int r, int x, int tp, int v = 1, int tl = 1, int tr = n )
{
if( tl > r || l > tr ) return 0;
if( l <= tl && tr <= r )
{
if( !nashel ) return sz(t[v][tp]) - t[v][tp].order_of_key(x);
else
{
int xx = sz(t[v][tp]) - t[v][tp].order_of_key(x);
if( xx == 0 ) return 0; del.clear();
int kuda = sz(t[v][tp]) - xx;
while( sz(t[v][tp]) > kuda && x - *t[v][tp].rbegin() + ans < ans ) del.pb(*t[v][tp].rbegin()), t[v][tp].erase(t[v][tp].rbegin());
for( auto i : del ) t[v][tp].ins(i), answ.pb(x - i + ans);
return xx;
}
}
int tm = tl + tr >> 1;
return get( l, r, x, tp, v + v, tl, tm ) + get( l, r, x, tp, v + v + 1, tm + 1, tr );
}
int check( int dist )
{
int res = 0;
st1.clear(); st2.clear();
FOR( i, 1, n, 1 )
{
int px = ordx[i - 1], py = ry[px];
// x[px] + y[px] - ne <= dist
// x[px] + y[px] - dist <= ne
res += get( 1, py - 1, x[px] + y[px] - dist, 0 );
res += get( py + 1, n, x[px] - y[px] - dist, 1 );
update( py, x[px] + y[px], 0 );
update( py, x[px] - y[px], 1 );
}
FOR( i, 1, 4 * n, 1 ) t[i][1].clear(), t[i][0].clear();
return res;
}
void solve()
{
cin >> n >> k;
vector <int> v;
FOR( i, 1, n, 1 )
{
cin >> x[i] >> y[i];
ordx.pb(i); ordy.pb(i);
}
sort( all(ordx), cmpx );
sort( all(ordy), cmpy );
FOR( i, 1, n, 1 ) ry[ordy[i - 1]] = i;
int l = 0, r = 4e9; ans = 4e9;
while( l <= r )
{
int md = l + r >> 1;
if( check(md) >= k ) r = md - 1, ans = md;
else l = md + 1;
}
nashel = 1;
FOR( i, 1, n, 1 )
{
int px = ordx[i - 1], py = ry[px];
get( 1, py - 1, x[px] + y[px] - ans, 0 );
get( py + 1, n, x[px] - y[px] - ans, 1 );
update( py, x[px] + y[px], 0 );
update( py, x[px] - y[px], 1 );
}
sort( all( answ ));
FOR( i, 0, min( k - 1, sz(answ) - 1 ), 1 ) cout << answ[i] << '\n';
FOR( i, sz(answ), k - 1, 1 ) cout << ans << '\n';
}
signed main()
{
// freopen("connect.in", "r", stdin);
// freopen("connect.out", "w", stdout);
respagold
int test = 1;
if( !test ) cin >> test;
while( test -- )
{
solve();
}
}
// solved by KluydQ
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |