Submission #113987

# Submission time Handle Problem Language Result Execution time Memory
113987 2019-05-29T12:30:56 Z dorijanlendvaj Boat (APIO16_boat) C++14
58 / 100
2000 ms 74364 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#define x first
#define y second
#define pii pair<int,int>
#define pb push_back
#define eb emplace_back
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx,avx2,sse,sse2,sse3,ssse3,sse4")

using namespace std;
using namespace __gnu_pbds;

typedef long long int ll;
typedef unsigned long long int ull;
int MOD=1000000007;
int MOD2=998244353;
vector<int> bases;
const ll LLINF=1ll<<60;
const char en='\n';

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
void yes() {cout<<"YES"<<en; exit(0);}
void no() {cout<<"NO"<<en; exit(0);}
inline int rund() {int x576363482791fuweh=rng();return abs(x576363482791fuweh)%RAND_MAX;}
template<class T>
void prVec(vector<T> w)
{
	cout<<w.size()<<endl;
	for (int i=0;i<int(w.size())-1;++i) cout<<w[i]<<' ';
	if (w.size()) cout<<w[w.size()-1]<<endl;
}

void M998()
{
	swap(MOD,MOD2);
}

ll raand()
{
	ll a=rund();
	a*=RAND_MAX;
	a+=rund();
    return a;
}

#define rand raand

ll raaand()
{
	return raand()*(MOD-7)+raand();
}

string to_upper(string a)
{
	for (int i=0;i<(int)a.size();++i) if (a[i]>='a' && a[i]<='z') a[i]-='a'-'A';
	return a;
}

string to_lower(string a)
{
	for (int i=0;i<(int)a.size();++i) if (a[i]>='A' && a[i]<='Z') a[i]+='a'-'A';
	return a;
}

ll sti(string a)
{
	ll k=0;
	for (int i=0;i<(int)a.size();++i)
	{
		k*=10;
		k+=a[i]-'0';
	}
	return k;
}

string its(ll k)
{
	if (k==0) return "0";
	string a;
	while (k)
	{
		a.push_back((k%10)+'0');
		k/=10;
	}
	reverse(a.begin(),a.end());
	return a;
}

ll min(ll a,int b)
{
	if (a<b) return a;
	return b;
}

ll min(int a,ll b)
{
	if (a<b) return a;
	return b;
}

ll max(ll a,int b)
{
	if (a>b) return a;
	return b;
}

ll max(int a,ll b)
{
	if (a>b) return a;
	return b;
}

ll gcd(ll a,ll b)
{
	if (b==0) return a;
	return gcd(b,a%b);
}

ll lcm(ll a,ll b)
{
	return a/gcd(a,b)*b;
}

template<class T,class K>
pair<T,K> mp(T a,K b)
{
	return make_pair(a,b);
}

inline int mult(ll a,ll b)
{
	return (a*b)%MOD;
}

inline int pot(int n,int k)
{
	if (k==0) return 1;
	ll a=pot(n,k/2);
	a=mult(a,a);
	if (k%2) return mult(a,n);
	else return a;
}

int divide(int a,int b)
{
	return mult(a,pot(b,MOD-2));
}

inline int sub(int a,int b)
{
	if (a-b>=0) return a-b;
	return a-b+MOD;
}

inline int add(int a,int b)
{
	if (a+b>=MOD) return a+b-MOD;
	return a+b;
}

bool prime(ll a)
{
	if (a==1) return 0;
	for (int i=2;i<=round(sqrt(a));++i)
	{
		if (a%i==0) return 0;
	}
	return 1;
}

ll has(string x)
{
	ll h1=0,h2=0;
	x=to_lower(x);
	for (char a: x)
	{
		h1*=bases[0];
		h1+=a-'a';
		h1%=bases[3];
		h2*=bases[1];
		h2+=a-'a';
		h2%=bases[4];
	}
	return h1*(MOD+13893829)+h2;
}

#define int unsigned

const int N=1020,M=1<<10,SZ=2907;
int n,fac[N],inf[N],dp[N],pre[N],in[N];
pair<int,int> h[N];
vector<pair<int,int>> ha[N][SZ];
vector<pair<int,int>> so;
vector<int> poi;
set<int> poo;
int seg[M+N][N];
int po[N];

void addH(int i,int j,int x)
{
	int i1=i;
	i=(i^0x183b4278)%SZ;
	for (auto &a: ha[j][i]) if (a.y==i1)
	{
		a.x=add(a.x,x);
		return;
	}
	ha[j][i].pb({x,i1});
}

void upd(int i,int j,int x)
{
	i+=M;
	seg[i][j]=add(seg[i][j],x);
}

signed main()
{
	ios_base::sync_with_stdio(false);
	cin.tie(0);
	for (int i=0;i<10;++i) bases.push_back((rand()%MOD+13893829)%MOD);
	cin>>n;
	fac[0]=1;
	const int MAX=1001;
	for (int i=1;i<=MAX;++i) fac[i]=mult(fac[i-1],i),in[i]=divide(1,i);
	inf[MAX]=divide(1,fac[MAX]);
	for (signed i=MAX-1;i>=0;--i) inf[i]=mult(inf[i+1],i+1);
	for (int i=0;i<n;++i) cin>>h[i].x>>h[i].y,poo.insert(h[i].x),poo.insert(h[i].y+1);
	for (auto a: poo) poi.pb(a);
	for (int i=1;i<poi.size();++i) so.pb({poi[i-1],poi[i]});
	so.pb({poi.back(),MOD-6});
	upd(0,0,1);
	for (int k=0;k<=MAX;++k) pre[k]+=1;
	dp[0]=1;
	for (int i=0;i<n;++i)
	{
		for (signed j=upper_bound(so.begin(),so.end(),mp(h[i].y+1,0u))-so.begin()-1;j>=0 && so[j].x>=h[i].x;--j)
		{
			int jj=j+1;
			for (signed k=MAX/2-1;k>=0;--k) upd(jj,k+1,seg[jj+M][k]);
			//for (int k=MAX-1;k>=0;--k) upd(jj,k,-seg[jj+M][k+1]);
			for (int k=0;k<1;++k) upd(jj,k,pre[j]);
			//cout<<en<<i<<' '<<jj<<' '<<so[j].x<<' '<<so[j].y;
			int re=0,r1=1;
			int zz=min(MAX/2+5,so[j].y-so[j].x);
			for (int k=0;k<zz;++k) if (seg[jj+M][k])
			{
				r1=mult(r1,so[j].y-so[j].x-k);
				r1=mult(r1,in[k+1]);
				re=add(re,mult(r1,seg[jj+M][k]));
			}
			int z=sub(re,dp[jj]);
			for (int k=jj;k<=MAX;++k) pre[k]=add(pre[k],z);
			dp[jj]=re;
			//cout<<' '<<re<<endl;
			//cout<<i<<' '<<j<<' '<<so[j].x<<' '<<so[j].y<<endl;
			//for (int k=0;k<MAX;++k) cout<<seg[jj+M][k]<<' ';
			//cout<<endl<<en<<endl;
			//upd(j+1,mult(get(0,j+1),so[j].y-so[j].x));
		}
	}
	int res=0;
	for (int i=1;i<=so.size();++i) for (int k=0;k<min(MAX/2+5,so[i-1].y-so[i-1].x);++k) if (seg[i+M][k])
	{
		int r1=1;
		for (int j=so[i-1].y-so[i-1].x;j>=so[i-1].y-so[i-1].x-k;--j) r1=mult(r1,j);
		r1=mult(r1,inf[k+1]);
		r1=mult(r1,seg[i+M][k]);
		//if (r1) cout<<i<<' '<<k<<' '<<r1<<endl;
		res=add(res,r1);
	}
	cout<<res;
}


# Verdict Execution time Memory Grader output
1 Correct 70 ms 73080 KB Output is correct
2 Correct 66 ms 73052 KB Output is correct
3 Correct 65 ms 73080 KB Output is correct
4 Correct 71 ms 73080 KB Output is correct
5 Correct 65 ms 72992 KB Output is correct
6 Correct 64 ms 73080 KB Output is correct
7 Correct 66 ms 73080 KB Output is correct
8 Correct 66 ms 73080 KB Output is correct
9 Correct 93 ms 73060 KB Output is correct
10 Correct 76 ms 73080 KB Output is correct
11 Correct 65 ms 73080 KB Output is correct
12 Correct 66 ms 73080 KB Output is correct
13 Correct 69 ms 73080 KB Output is correct
14 Correct 96 ms 73144 KB Output is correct
15 Correct 63 ms 73080 KB Output is correct
16 Correct 62 ms 70520 KB Output is correct
17 Correct 65 ms 70648 KB Output is correct
18 Correct 68 ms 70520 KB Output is correct
19 Correct 63 ms 70520 KB Output is correct
20 Correct 64 ms 70648 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 70 ms 73080 KB Output is correct
2 Correct 66 ms 73052 KB Output is correct
3 Correct 65 ms 73080 KB Output is correct
4 Correct 71 ms 73080 KB Output is correct
5 Correct 65 ms 72992 KB Output is correct
6 Correct 64 ms 73080 KB Output is correct
7 Correct 66 ms 73080 KB Output is correct
8 Correct 66 ms 73080 KB Output is correct
9 Correct 93 ms 73060 KB Output is correct
10 Correct 76 ms 73080 KB Output is correct
11 Correct 65 ms 73080 KB Output is correct
12 Correct 66 ms 73080 KB Output is correct
13 Correct 69 ms 73080 KB Output is correct
14 Correct 96 ms 73144 KB Output is correct
15 Correct 63 ms 73080 KB Output is correct
16 Correct 62 ms 70520 KB Output is correct
17 Correct 65 ms 70648 KB Output is correct
18 Correct 68 ms 70520 KB Output is correct
19 Correct 63 ms 70520 KB Output is correct
20 Correct 64 ms 70648 KB Output is correct
21 Correct 238 ms 73808 KB Output is correct
22 Correct 250 ms 73848 KB Output is correct
23 Correct 224 ms 73736 KB Output is correct
24 Correct 237 ms 73748 KB Output is correct
25 Correct 352 ms 73720 KB Output is correct
26 Correct 303 ms 73500 KB Output is correct
27 Correct 297 ms 73728 KB Output is correct
28 Correct 296 ms 73592 KB Output is correct
29 Correct 309 ms 73592 KB Output is correct
30 Correct 68 ms 74076 KB Output is correct
31 Correct 71 ms 74072 KB Output is correct
32 Correct 68 ms 74076 KB Output is correct
33 Correct 65 ms 74104 KB Output is correct
34 Correct 68 ms 74104 KB Output is correct
35 Correct 67 ms 74068 KB Output is correct
36 Correct 68 ms 74104 KB Output is correct
37 Correct 66 ms 74008 KB Output is correct
38 Correct 66 ms 74104 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 78 ms 70904 KB Output is correct
2 Correct 73 ms 70776 KB Output is correct
3 Correct 78 ms 70776 KB Output is correct
4 Correct 80 ms 70800 KB Output is correct
5 Correct 79 ms 70776 KB Output is correct
6 Correct 96 ms 70776 KB Output is correct
7 Correct 94 ms 70904 KB Output is correct
8 Correct 93 ms 70904 KB Output is correct
9 Correct 95 ms 70904 KB Output is correct
10 Correct 94 ms 70776 KB Output is correct
11 Correct 80 ms 70876 KB Output is correct
12 Correct 74 ms 70856 KB Output is correct
13 Correct 76 ms 70776 KB Output is correct
14 Correct 76 ms 70904 KB Output is correct
15 Correct 79 ms 70776 KB Output is correct
16 Correct 70 ms 70520 KB Output is correct
17 Correct 68 ms 70520 KB Output is correct
18 Correct 69 ms 70520 KB Output is correct
19 Correct 70 ms 70520 KB Output is correct
20 Correct 71 ms 70392 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 70 ms 73080 KB Output is correct
2 Correct 66 ms 73052 KB Output is correct
3 Correct 65 ms 73080 KB Output is correct
4 Correct 71 ms 73080 KB Output is correct
5 Correct 65 ms 72992 KB Output is correct
6 Correct 64 ms 73080 KB Output is correct
7 Correct 66 ms 73080 KB Output is correct
8 Correct 66 ms 73080 KB Output is correct
9 Correct 93 ms 73060 KB Output is correct
10 Correct 76 ms 73080 KB Output is correct
11 Correct 65 ms 73080 KB Output is correct
12 Correct 66 ms 73080 KB Output is correct
13 Correct 69 ms 73080 KB Output is correct
14 Correct 96 ms 73144 KB Output is correct
15 Correct 63 ms 73080 KB Output is correct
16 Correct 62 ms 70520 KB Output is correct
17 Correct 65 ms 70648 KB Output is correct
18 Correct 68 ms 70520 KB Output is correct
19 Correct 63 ms 70520 KB Output is correct
20 Correct 64 ms 70648 KB Output is correct
21 Correct 238 ms 73808 KB Output is correct
22 Correct 250 ms 73848 KB Output is correct
23 Correct 224 ms 73736 KB Output is correct
24 Correct 237 ms 73748 KB Output is correct
25 Correct 352 ms 73720 KB Output is correct
26 Correct 303 ms 73500 KB Output is correct
27 Correct 297 ms 73728 KB Output is correct
28 Correct 296 ms 73592 KB Output is correct
29 Correct 309 ms 73592 KB Output is correct
30 Correct 68 ms 74076 KB Output is correct
31 Correct 71 ms 74072 KB Output is correct
32 Correct 68 ms 74076 KB Output is correct
33 Correct 65 ms 74104 KB Output is correct
34 Correct 68 ms 74104 KB Output is correct
35 Correct 67 ms 74068 KB Output is correct
36 Correct 68 ms 74104 KB Output is correct
37 Correct 66 ms 74008 KB Output is correct
38 Correct 66 ms 74104 KB Output is correct
39 Correct 78 ms 70904 KB Output is correct
40 Correct 73 ms 70776 KB Output is correct
41 Correct 78 ms 70776 KB Output is correct
42 Correct 80 ms 70800 KB Output is correct
43 Correct 79 ms 70776 KB Output is correct
44 Correct 96 ms 70776 KB Output is correct
45 Correct 94 ms 70904 KB Output is correct
46 Correct 93 ms 70904 KB Output is correct
47 Correct 95 ms 70904 KB Output is correct
48 Correct 94 ms 70776 KB Output is correct
49 Correct 80 ms 70876 KB Output is correct
50 Correct 74 ms 70856 KB Output is correct
51 Correct 76 ms 70776 KB Output is correct
52 Correct 76 ms 70904 KB Output is correct
53 Correct 79 ms 70776 KB Output is correct
54 Correct 70 ms 70520 KB Output is correct
55 Correct 68 ms 70520 KB Output is correct
56 Correct 69 ms 70520 KB Output is correct
57 Correct 70 ms 70520 KB Output is correct
58 Correct 71 ms 70392 KB Output is correct
59 Correct 1266 ms 74148 KB Output is correct
60 Correct 1149 ms 74232 KB Output is correct
61 Correct 1120 ms 74364 KB Output is correct
62 Correct 1284 ms 74232 KB Output is correct
63 Correct 1215 ms 74232 KB Output is correct
64 Execution timed out 2060 ms 74076 KB Time limit exceeded
65 Halted 0 ms 0 KB -