#include <bits/stdc++.h>
#pragma GCC optimize("O3", "unroll-loops")
using namespace std;
template<typename Lhs, typename Rhs> bool Min_self(Lhs& lhs, Rhs rhs) { if(rhs < lhs) { lhs = rhs; return true; } return false; }
template<typename Lhs, typename Rhs> bool Max_self(Lhs& lhs, Rhs rhs) { if(rhs > lhs) { lhs = rhs; return true; } return false; }
using ll = long long;
const int N = 70'000 + 10;
const int INF = 1'000'000'000;
struct LazySegTree {
struct Node {
int val_min = -2 * INF;
int val_max = 2 * INF;
int lazy_min = -2 * INF;
int lazy_max = 2 * INF;
Node() {};
Node(int _val_min, int _val_max, int _lazy_min, int _lazy_max) : val_min(_val_min), val_max(_val_max), lazy_min(_lazy_min), lazy_max(_lazy_max) {};
Node operator + (const Node& other) const {
Node res;
res.val_min = max(this->val_min, other.val_min);
res.val_max = min(this->val_max, other.val_max);
return res;
}
};
int n_node = 0;
vector<Node> tree = {};
void resize(int _n) { n_node = _n; tree.resize((n_node << 2) + 10); };
LazySegTree() {};
LazySegTree(int _n) { this->resize(_n); };
void down(int node, int l, int r) {
Max_self(tree[node].val_min, tree[node].lazy_min);
Min_self(tree[node].val_max, tree[node].lazy_max);
if (l < r) {
Max_self(tree[node << 1].lazy_min, tree[node].lazy_min);
Max_self(tree[node << 1 | 1].lazy_min, tree[node].lazy_min);
Min_self(tree[node << 1].lazy_max, tree[node].lazy_max);
Min_self(tree[node << 1 | 1].lazy_max, tree[node].lazy_max);
}
tree[node].lazy_min = -2 * INF;
tree[node].lazy_max = 2 * INF;
}
void update(int node, int l, int r, int L, int R, int val_min, int val_max) {
down(node, l, r);
if (l > r || L > R || l > R || L > r) return;
if (L <= l && r <= R) {
Max_self(tree[node].lazy_min, val_min);
Min_self(tree[node].lazy_max, val_max);
down(node, l, r);
return;
}
int mid = (l + r) >> 1;
update(node << 1, l, mid, L, R, val_min, val_max);
update(node << 1 | 1, mid + 1, r, L, R, val_min, val_max);
tree[node] = tree[node << 1] + tree[node << 1 | 1];
}
void Update(int l, int r, int val_min, int val_max) {
return update(1, 1, n_node, l, r, val_min, val_max);
}
Node query(int node, int l, int r, int L, int R) {
down(node, l, r);
if (l > r || L > R || l > R || L > r) return Node();
if (L <= l && r <= R) return tree[node];
int mid = (l + r) >> 1;
return query(node << 1, l, mid, L, R) + query(node << 1 | 1, mid + 1, r, L, R);
}
Node Query(int l, int r) {
return query(1, 1, n_node, l, r);
}
};
int n, q;
pair<int, int> edges[N];
vector<int> g[N];
int dist[N], parent[N], child[N];
int cnt_chain, cnt_pos;
int chain_head[N], chain_of[N], inHld[N];
LazySegTree st;
pair<int, int> couple[N];
vector<int> g_edge[N];
int res[N];
void dfs(int u);
void hld(int u);
void makeHld();
void updateHld(int u, int v, int val_min, int val_max) {
while(true) {
if(chain_of[u] == chain_of[v]) {
int l = inHld[u], r = inHld[v];
if(l > r) swap(l, r);
++l;
st.Update(l, r, val_min, val_max);
break;
}
if(dist[chain_head[chain_of[u]]] < dist[chain_head[chain_of[v]]]) swap(u, v);
int l = inHld[chain_head[chain_of[u]]];
int r = inHld[u];
st.Update(l, r, val_min, val_max);
u = parent[chain_head[chain_of[u]]];
}
}
LazySegTree::Node queryHld(int u, int v) {
LazySegTree::Node res;
while(true) {
if(chain_of[u] == chain_of[v]) {
int l = inHld[u], r = inHld[v];
if(l > r) swap(l, r);
++l;
res = res + st.Query(l, r);
break;
}
if(dist[chain_head[chain_of[u]]] < dist[chain_head[chain_of[v]]]) swap(u, v);
int l = inHld[chain_head[chain_of[u]]];
int r = inHld[u];
res = res + st.Query(l, r);
u = parent[chain_head[chain_of[u]]];
}
return res;
}
void dfs(int u) {
child[u] = 1;
for(const auto& v : g[u]) {
if(v == parent[u]) continue;
parent[v] = u;
dist[v] = dist[u] + 1;
dfs(v);
child[u] += child[v];
}
}
void hld(int u) {
if(chain_head[cnt_chain] == 0) chain_head[cnt_chain] = u;
chain_of[u] = cnt_chain;
inHld[u] = ++cnt_pos;
int big_child = -1;
for(const auto& v : g[u]) {
if(v == parent[u]) continue;
if(big_child == -1 || child[v] > child[big_child]) big_child = v;
}
if(big_child > -1) {
hld(big_child);
}
for(const auto& v : g[u]) {
if(v == parent[u] || v == big_child) continue;
++cnt_chain; hld(v);
}
}
void makeHld() {
dist[1] = 1; dfs(1);
cnt_chain = 1; hld(1);
}
void solve() {
cin >> n;
for (int i = 2; i <= n; ++i) {
auto& [u, v] = edges[i]; cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
makeHld();
cin >> q;
st.resize(n);
while (q-- > 0) {
char type; cin >> type;
int u, v;
int val_min = -2 * INF, val_max = 2 * INF;
cin >> u >> v;
if (type == 'M') {
cin >> val_max;
} else {
cin >> val_min;
}
updateHld(u, v, val_min, val_max);
}
map<int, vector<int>> mp;
for (int i = 2; i <= n; ++i) {
const auto& [u, v] = edges[i];
auto [val_min, val_max, lazy_min, lazy_max] = queryHld(u, v);
couple[i] = make_pair(val_min, val_max);
if (val_max != 2 * INF) {
res[i] = val_max;
if (val_min != -2 * INF) {
mp[val_min].push_back(i);
}
} else {
res[i] = val_min;
}
}
for (auto& [val_min, list_edges] : mp) {
sort(list_edges.begin(), list_edges.end(), [&] (int lhs, int rhs) -> bool {
if (couple[lhs].second != couple[rhs].second) return couple[lhs].second < couple[rhs].second;
return res[lhs] > res[rhs];
});
for (int i = 1; i < list_edges.size(); ++i) {
int pref = list_edges[i - 1];
int cur = list_edges[i];
if (couple[pref].second == couple[cur].second && res[pref] == couple[pref].second) {
res[pref] = val_min;
break;
}
}
}
for (int i = 2; i <= n; ++i) {
const auto& [u, v] = edges[i];
cout << u << ' ' << v << ' ' << res[i] << '\n';
}
}
int32_t main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(nullptr); std::cout.tie(nullptr);
// int t; cin >> t;
int t = 1;
while (t-- > 0) {
solve();
// cout << '\n';
}
return (0 ^ 0);
}
/// Code by vuavisao
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |